Suppr超能文献

基于理论描述符的经过统计学验证的定量构效关系,用于模拟有机化学品对黑头呆鱼(肥头鲦鱼)的水生毒性。

Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).

作者信息

Papa Ester, Villa Fulvio, Gramatica Paola

机构信息

Department of Structural and Functional Biology, QSAR and Environmental Chemistry Research Unit, University of Insubria, via Dunant 3, 21100 Varese, Italy.

出版信息

J Chem Inf Model. 2005 Sep-Oct;45(5):1256-66. doi: 10.1021/ci050212l.

Abstract

The use of Quantitative Structure-Activity Relationships in assessing the potential negative effects of chemicals plays an important role in ecotoxicology. (LC50)(96h) in Pimephales promelas (Duluth database) is widely modeled as an aquatic toxicity end-point. The object of this study was to compare different molecular descriptors in the development of new statistically validated QSAR models to predict the aquatic toxicity of chemicals classified according to their MOA and in a unique general model. The applied multiple linear regression approach (ordinary least squares) is based on theoretical molecular descriptor variety (1D, 2D, and 3D, from DRAGON package, and some calculated logP). The best combination of modeling descriptors was selected by the Genetic Algorithm-Variable Subset Selection procedure. The robustness and the predictive performance of the proposed models was verified using both internal (cross-validation by LOO, bootstrap, Y-scrambling) and external statistical validations (by splitting the original data set into training and validation sets by Kohonen-artificial neural networks (K-ANN)). The model applicability domain (AD) was checked by the leverage approach to verify prediction reliability.

摘要

定量构效关系在评估化学物质潜在负面影响方面的应用在生态毒理学中起着重要作用。黑头呆鱼(德卢斯数据库)中的(96小时)半数致死浓度(LC50)被广泛建模为水生毒性终点。本研究的目的是比较不同的分子描述符,以开发新的经过统计验证的定量构效关系模型,用于预测根据作用机制分类的化学物质的水生毒性,并建立一个通用模型。所应用的多元线性回归方法(普通最小二乘法)基于理论分子描述符的多样性(来自DRAGON软件包的1D、2D和3D描述符,以及一些计算得到的logP)。通过遗传算法-变量子集选择程序选择建模描述符的最佳组合。使用内部(留一法交叉验证、自助法、Y-随机置换)和外部统计验证(通过Kohonen人工神经网络(K-ANN)将原始数据集分为训练集和验证集)来验证所提出模型的稳健性和预测性能。通过杠杆方法检查模型适用域(AD)以验证预测可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验