Suppr超能文献

Structure calculations for single-stranded DNA complexed with the single-stranded DNA binding protein GP32 of bacteriophage T4: a remarkable DNA structure.

作者信息

van Amerongen H, Kuil M E, Scheerhagen M A, van Grondelle R

机构信息

Department of Physics and Astronomy, Free University, Amsterdam, The Netherlands.

出版信息

Biochemistry. 1990 Jun 12;29(23):5619-25. doi: 10.1021/bi00475a029.

Abstract

In this study it is established by calculation which regular conformations single-stranded DNA and RNA can adopt in the complex with the single-stranded DNA binding protein GP32 of bacteriophage T4. In order to do so, information from previous experiments about base orientations and the length and diameter of the complexes is used together with knowledge about bond lengths and valence angles between chemical bonds. It turns out that there is only a limited set of similar conformations which are in agreement with experimental data. The arrangement of neighboring bases is such that there is ample space for aromatic residues of the protein to partly intercalate between the bases, which is in agreement with a previously proposed model for the binding domain of the protein [Prigodich, R. V., Shamoo, Y., Williams, K. R., Chase, J. W., Konigsberg, W. H., & Coleman, J. E. (1986) Biochemistry 25, 3666-3671]. Both C2'endo and C3'endo sugar conformations lead to calculated DNA conformations that are consistent with experimental data. The orientation of the O2' atoms of the sugars in RNA can explain why the binding affinity of GP32 for polyribonucleotides is lower than for polydeoxyribonucleotides.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验