Suppr超能文献

具有肽吸附的石墨烯器件的电子性质:来自模拟的洞察。

Electronic properties of a graphene device with peptide adsorption: insight from simulation.

机构信息

Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States.

出版信息

ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7470-7. doi: 10.1021/am401731c. Epub 2013 Aug 2.

Abstract

In this work, to explain doping behavior of single-layer graphene upon HSSYWYAFNNKT (P1) and HSSAAAAFNNKT (P1-3A) adsorption in field-effect transistors (GFETs), we applied a combined computational approach, whereby peptide adsorption was modeled by molecular dynamics simulations, and the lowest energy configuration was confirmed by density functional theory calculations. On the basis of the resulting structures of the hybrid materials, electronic structure and transport calculations were investigated. We demonstrate that π-π stacking of the aromatic residues and proximate peptide backbone to the graphene surface in P1 have a role in the p-doping. These results are consistent with our experimental observation of the GFET's p-doping even after a 24-h annealing procedure. Upon substitution of three of the aromatic residues to Ala in (P1-3A), a considerable decrease from p-doping is observed experimentally, demonstrating n-doping as compared to the nonadsorbed device, yet not explained based on the atomistic MD simulation structures. To gain a qualitative understanding of P1-3A's adsorption over a longer simulation time, which may differ from aromatic amino acid residues' swift anchoring on the surface, we analyzed equilibrated coarse-grain simulations performed for 500 ns. Desorption of the Ala residues from the surface was shown computationally, which could in turn affect charge transfer, yet a full explanation of the mechanism of n-doping will require elucidation of differences between various aromatic residues as dependent on peptide composition, and inclusion of effects of the substrate and environment, to be considered in future work.

摘要

在这项工作中,为了解释单层石墨烯在 HSSYWYAFNNKT(P1)和 HSSAAAAFNNKT(P1-3A)吸附在场效应晶体管(GFET)中的掺杂行为,我们应用了一种组合计算方法,其中通过分子动力学模拟来模拟肽吸附,并用密度泛函理论计算来确认最低能量构型。基于杂交材料的结果结构,研究了电子结构和输运计算。我们证明了 P1 中芳香残基的π-π堆积和肽骨架与石墨烯表面的接近对 p 掺杂有作用。这些结果与我们对 GFET 的 p 掺杂的实验观察一致,即使在 24 小时退火处理后也是如此。在(P1-3A)中将三个芳香残基替换为 Ala 后,实验观察到 p 掺杂显著降低,与非吸附器件相比表现出 n 掺杂,但基于原子 MD 模拟结构无法解释。为了在更长的模拟时间内获得对 P1-3A 吸附的定性理解,这可能与芳香氨基酸残基在表面上的迅速固定不同,我们分析了进行了 500 ns 的平衡粗粒化模拟。计算表明 Ala 残基从表面解吸,这反过来又会影响电荷转移,但要完全解释 n 掺杂的机制,需要阐明不同芳香族残基之间的差异,以及依赖于肽组成、包括底物和环境的影响,这将在未来的工作中进行考虑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验