Shearn C T, Smathers R L, Backos D S, Reigan P, Orlicky D J, Petersen Dennis R
Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
Department of Pathology, School of Medicine, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
Free Radic Biol Med. 2013 Dec;65:680-692. doi: 10.1016/j.freeradbiomed.2013.07.011. Epub 2013 Jul 17.
The production of reactive aldehydes such as 4-hydroxynonenal (4-HNE) is a key event in the pathogenesis of alcoholic liver disease (ALD), which ranges from simple steatosis to fibrosis. The lipid phosphatase PTEN plays a central role in the regulation of lipid metabolism in the liver. In this study, the effects of chronic ethanol feeding and carbonylation on the PTEN signaling pathway were examined in a 9-week mouse feeding model for ALD. Chronic ethanol consumption resulted in altered redox homeostasis as evidenced by decreased GSH, decreased Trx1, and increased GST activity. Both PTEN expression and PTEN phosphorylation were significantly increased in the livers of ethanol-fed mice. Carbonylation of PTEN increased significantly in the ethanol-fed mice compared to pair-fed control animals, corresponding to decreased PTEN 3-phosphatase activity. Concomitantly, increased expression of Akt2 along with increased Akt phosphorylation at residues Thr(308), Thr(450), and Ser(473) was observed resulting in increased Akt2 activity in the ethanol-fed animals. Akt2 activation corresponded to a decrease in cytosolic SREBP and ChREBP. Subsequent LC/MS/MS analysis of 4-HNE-modified recombinant human PTEN identified Michael addition adducts of 4-HNE on Cys(71), Cys(136), Lys(147), Lys(223), Cys(250), Lys(254), Lys(313), Lys(327), and Lys(344). Computational-based molecular modeling analysis of 4-HNE adducted to Cys(71) near the active site and Lys(327) in the C2 domain of PTEN suggested inhibition of enzyme catalysis via either stearic hindrance of the active-site pocket or prevention of C2 domain-dependent PTEN function. We hypothesize that 4-HNE-mediated PTEN inhibition contributes to the observed activation of Akt2, suggesting a possible novel mechanism of lipid accumulation in response to increased reactive aldehyde production during chronic ethanol administration in mice.
反应性醛类如4-羟基壬烯醛(4-HNE)的产生是酒精性肝病(ALD)发病机制中的关键事件,ALD的范围从单纯性脂肪变性到纤维化。脂质磷酸酶PTEN在肝脏脂质代谢调节中起核心作用。在本研究中,在一个为期9周的ALD小鼠喂养模型中,检测了慢性乙醇喂养和羰基化对PTEN信号通路的影响。慢性乙醇摄入导致氧化还原稳态改变,表现为谷胱甘肽(GSH)减少、硫氧还蛋白1(Trx1)减少和谷胱甘肽S-转移酶(GST)活性增加。在乙醇喂养小鼠的肝脏中,PTEN表达和PTEN磷酸化均显著增加。与配对喂养的对照动物相比,乙醇喂养小鼠中PTEN的羰基化显著增加,这与PTEN 3-磷酸酶活性降低相对应。同时,观察到乙醇喂养动物中Akt2表达增加,以及Akt在苏氨酸(Thr)(308)、苏氨酸(450)和丝氨酸(Ser)(473)残基处的磷酸化增加,导致Akt2活性增加。Akt2激活对应于胞质固醇调节元件结合蛋白(SREBP)和碳水化合物反应元件结合蛋白(ChREBP)减少。随后对4-HNE修饰的重组人PTEN进行的液相色谱/串联质谱(LC/MS/MS)分析鉴定出4-HNE在半胱氨酸(Cys)(71)、半胱氨酸(136)、赖氨酸(Lys)(147)、赖氨酸(223)、半胱氨酸(250)、赖氨酸(254)、赖氨酸(313)、赖氨酸(327)和赖氨酸(344)上的迈克尔加成加合物。对4-HNE加合到PTEN活性位点附近的半胱氨酸(71)和C2结构域中的赖氨酸(327)进行基于计算的分子建模分析表明,通过活性位点口袋的空间位阻或阻止C2结构域依赖性PTEN功能来抑制酶催化。我们假设4-HNE介导的PTEN抑制导致了观察到的Akt2激活,这表明在小鼠慢性乙醇给药期间,响应于反应性醛类产生增加,脂质积累可能存在一种新机制。