Suppr超能文献

结合个体建模和食物微环境描述来预测涂抹软干酪中单核细胞增生李斯特菌的生长。

Combining individual-based modeling and food microenvironment descriptions to predict the growth of Listeria monocytogenes on smear soft cheese.

机构信息

Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité Microbiologie des Aliments Sécurité et Qualité, Maisons-Alfort, France.

出版信息

Appl Environ Microbiol. 2013 Oct;79(19):5870-81. doi: 10.1128/AEM.01311-13. Epub 2013 Jul 19.

Abstract

An individual-based modeling (IBM) approach was developed to describe the behavior of a few Listeria monocytogenes cells contaminating smear soft cheese surface. The IBM approach consisted of assessing the stochastic individual behaviors of cells on cheese surfaces and knowing the characteristics of their surrounding microenvironments. We used a microelectrode for pH measurements and micro-osmolality to assess the water activity of cheese microsamples. These measurements revealed a high variability of microscale pH compared to that of macroscale pH. A model describing the increase in pH from approximately 5.0 to more than 7.0 during ripening was developed. The spatial variability of the cheese surface characterized by an increasing pH with radius and higher pH on crests compared to that of hollows on cheese rind was also modeled. The microscale water activity ranged from approximately 0.96 to 0.98 and was stable during ripening. The spatial variability on cheese surfaces was low compared to between-cheese variability. Models describing the microscale variability of cheese characteristics were combined with the IBM approach to simulate the stochastic growth of L. monocytogenes on cheese, and these simulations were compared to bacterial counts obtained from irradiated cheeses artificially contaminated at different ripening stages. The simulated variability of L. monocytogenes counts with the IBM/microenvironmental approach was consistent with the observed one. Contrasting situations corresponding to no growth or highly contaminated foods could be deduced from these models. Moreover, the IBM approach was more effective than the traditional population/macroenvironmental approach to describe the actual bacterial behavior variability.

摘要

采用基于个体的建模 (IBM) 方法来描述污染涂抹软干酪表面的少数李斯特菌细胞的行为。IBM 方法包括评估细胞在奶酪表面上的随机个体行为,并了解其周围微环境的特征。我们使用微电极测量 pH 和微渗透压来评估奶酪微样本的水活度。这些测量结果显示,与宏观 pH 相比,微观 pH 的变化具有高度可变性。开发了一个描述 pH 值从大约 5.0 增加到成熟过程中超过 7.0 的模型。还对奶酪表面的空间变异性进行了建模,该变异性表现为随着半径的增加 pH 值增加,并且奶酪皮的凸起处的 pH 值高于凹陷处的 pH 值。微尺度水活度范围约为 0.96 至 0.98,并且在成熟过程中保持稳定。与奶酪之间的变异性相比,奶酪表面的空间变异性较低。描述奶酪特性微观尺度变异性的模型与 IBM 方法相结合,用于模拟李斯特菌在奶酪上的随机生长,并且这些模拟结果与从不同成熟阶段人工污染的辐照奶酪中获得的细菌计数进行了比较。IBM/microenvironmental 方法模拟的李斯特菌计数的可变性与观察到的可变性一致。可以从这些模型中推断出对应于无生长或高度污染食物的对比情况。此外,与传统的群体/宏观环境方法相比,IBM 方法更有效地描述了实际细菌行为的可变性。

相似文献

2
Comparison of individual-based modeling and population approaches for prediction of foodborne pathogens growth.
Food Microbiol. 2015 Feb;45(Pt B):205-15. doi: 10.1016/j.fm.2014.04.006. Epub 2014 Apr 26.
3
Modeling the growth of Listeria monocytogenes on the surface of smear- or mold-ripened cheese.
Front Cell Infect Microbiol. 2014 Jul 3;4:90. doi: 10.3389/fcimb.2014.00090. eCollection 2014.
5
Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures.
Int J Food Microbiol. 2015 Jul 2;204:55-65. doi: 10.1016/j.ijfoodmicro.2015.03.022. Epub 2015 Mar 26.
6
Modelling the fate of Listeria monocytogenes during manufacture and ripening of smeared cheese made with pasteurised or raw milk.
Int J Food Microbiol. 2011 Mar 1;145 Suppl 1:S31-8. doi: 10.1016/j.ijfoodmicro.2010.11.032. Epub 2010 Dec 1.
7
Validation of a stochastic modelling approach for Listeria monocytogenes growth in refrigerated foods.
Int J Food Microbiol. 2010 Dec 15;144(2):236-42. doi: 10.1016/j.ijfoodmicro.2010.09.024. Epub 2010 Oct 1.
9
Behaviour of Listeria monocytogenes during the manufacture and ripening of Manchego and Chihuahua Mexican cheeses.
Int J Food Microbiol. 2000 Dec 5;62(1-2):149-53. doi: 10.1016/s0168-1605(00)00403-7.

引用本文的文献

1
Contribution of omics to biopreservation: Toward food microbiome engineering.
Front Microbiol. 2022 Aug 2;13:951182. doi: 10.3389/fmicb.2022.951182. eCollection 2022.
4
Challenges of biofilm control and utilization: lessons from mathematical modelling.
J R Soc Interface. 2019 Jun 28;16(155):20190042. doi: 10.1098/rsif.2019.0042. Epub 2019 Jun 12.
5
A low-complexity metabolic network model for the respiratory and fermentative metabolism of Escherichia coli.
PLoS One. 2018 Aug 29;13(8):e0202565. doi: 10.1371/journal.pone.0202565. eCollection 2018.
6

本文引用的文献

1
Stochasticity in colonial growth dynamics of individual bacterial cells.
Appl Environ Microbiol. 2013 Apr;79(7):2294-301. doi: 10.1128/AEM.03629-12. Epub 2013 Jan 25.
2
Modeling the growth of Listeria monocytogenes in soft blue-white cheese.
Appl Environ Microbiol. 2012 Dec;78(24):8508-14. doi: 10.1128/AEM.01865-12. Epub 2012 Sep 14.
3
Single-Cell Growth Probability of Listeria monocytogenes at Suboptimal Temperature, pH, and Water Activity.
Front Microbiol. 2012 Apr 24;3:157. doi: 10.3389/fmicb.2012.00157. eCollection 2012.
6
Design of challenge testing experiments to assess the variability of Listeria monocytogenes growth in foods.
Food Microbiol. 2011 Jun;28(4):746-54. doi: 10.1016/j.fm.2010.05.028. Epub 2010 Jun 4.
7
Modelling the fate of Listeria monocytogenes during manufacture and ripening of smeared cheese made with pasteurised or raw milk.
Int J Food Microbiol. 2011 Mar 1;145 Suppl 1:S31-8. doi: 10.1016/j.ijfoodmicro.2010.11.032. Epub 2010 Dec 1.
8
Validation of a stochastic modelling approach for Listeria monocytogenes growth in refrigerated foods.
Int J Food Microbiol. 2010 Dec 15;144(2):236-42. doi: 10.1016/j.ijfoodmicro.2010.09.024. Epub 2010 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验