Kallio Aleksi, Elo Laura L
CSC-IT Center for Science Ltd, Espoo, Finland.
Methods Mol Biol. 2013;1038:181-91. doi: 10.1007/978-1-62703-514-9_11.
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) offers a powerful means to study transcription factor binding on a genome-wide scale. While a number of advanced software packages have already become available for identifying ChIP-seq-binding sites, it has become evident that the choice of the package together with its adjustable parameters can considerably affect the biological conclusions made from the data. Therefore, to aid these choices, we have recently introduced a reproducibility-optimization procedure, which computationally adjusts the parameters of the popular peak detection algorithms for each ChIP-seq data separately. Here, we provide a detailed description of the procedure together with practical guidelines on how to apply its implementation, the peakROTS R-package, in a given ChIP-seq experiment.
染色质免疫沉淀结合深度测序(ChIP-seq)为在全基因组范围内研究转录因子结合提供了一种强大的方法。虽然已经有许多先进的软件包可用于识别ChIP-seq结合位点,但很明显,软件包的选择及其可调整参数会极大地影响从数据得出的生物学结论。因此,为了辅助这些选择,我们最近引入了一种重现性优化程序,该程序针对每个ChIP-seq数据分别通过计算调整流行峰检测算法的参数。在这里,我们详细描述了该程序以及关于如何在给定的ChIP-seq实验中应用其实现方式(即peakROTS R包)的实用指南。