Suppr超能文献

CaV2.2 钙通道介导的突触囊泡捕获。

Synaptic vesicle capture by CaV2.2 calcium channels.

机构信息

Laboratory of Synaptic Transmission, Genetics and Development Division, Toronto Western Research Institute Toronto, ON, Canada.

出版信息

Front Cell Neurosci. 2013 Jun 28;7:101. doi: 10.3389/fncel.2013.00101. eCollection 2013.

Abstract

The fusion of synaptic vesicles (SVs) at the presynaptic transmitter release face is gated by Ca(2) (+) influx from nearby voltage-gated calcium channels (CaVs). Functional studies favor a direct molecular "tethering" attachment and recent studies have proposed a direct link to the channel C-terminal. To test for direct CaV-SV attachment we developed an in vitro assay, termed SV pull-down (SV-PD), to test for capture of purified, intact SVs. Antibody-immobilized presynaptic or expressed CaV2.2 channels but not plain beads, IgG or pre-blocked antibody successfully captured SVs, as assessed byWestern blot for a variety of protein markers. SV-PD was also observed with terminal fusion proteins of the distal half of the C-terminal, supporting involvement of this CaV region in tethering. Thus our results support a model in which the SV tethers directly to the CaV. Since the tip of the C-terminal could extend as far as 200 nm into the cytoplasm, we hypothesize that this link may serve as the initial SV capture mechanism by the release site. Further studies will be necessary to evaluate the molecular basis of C-terminal tethering and whether the SV binds to the channel by additional, shorter-range attachments.

摘要

突触小泡 (SVs) 在突触前递质释放面的融合由来自附近电压门控钙通道 (CaVs) 的 Ca(2) (+) 内流控制。功能研究支持直接的分子“系留”附着,最近的研究提出了与通道 C 末端的直接联系。为了测试 CaV-SV 的直接附着,我们开发了一种称为 SV 下拉 (SV-PD) 的体外测定法,以测试纯化的完整 SV 的捕获。用抗体固定的突触前或表达的 CaV2.2 通道而不是普通珠子、IgG 或预阻断抗体成功捕获了 SVs,这可以通过 Western blot 检测各种蛋白质标记物来评估。SV-PD 也观察到了 C 末端远端融合蛋白,支持该 CaV 区域在系留中的参与。因此,我们的结果支持 SV 直接与 CaV 系留的模型。由于 C 末端的尖端可以延伸到细胞质中长达 200nm,我们假设这种连接可能作为释放部位最初捕获 SV 的机制。进一步的研究将需要评估 C 末端系留的分子基础,以及 SV 是否通过其他更短程的附着与通道结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/facf/3708276/21a9938ad4ff/fncel-07-00101-g001.jpg

相似文献

1
Synaptic vesicle capture by CaV2.2 calcium channels.
Front Cell Neurosci. 2013 Jun 28;7:101. doi: 10.3389/fncel.2013.00101. eCollection 2013.
2
Molecular Characterization of an SV Capture Site in the Mid-Region of the Presynaptic CaV2.1 Calcium Channel C-Terminal.
Front Cell Neurosci. 2018 May 11;12:127. doi: 10.3389/fncel.2018.00127. eCollection 2018.
3
Characterization of a Synaptic Vesicle Binding Motif on the Distal CaV2.2 Channel C-terminal.
Front Cell Neurosci. 2016 Jun 9;10:145. doi: 10.3389/fncel.2016.00145. eCollection 2016.
4
The Calcium Channel C-Terminal and Synaptic Vesicle Tethering: Analysis by Immuno-Nanogold Localization.
Front Cell Neurosci. 2017 Mar 30;11:85. doi: 10.3389/fncel.2017.00085. eCollection 2017.
5
Synaptic vesicle tethering and the CaV2.2 distal C-terminal.
Front Cell Neurosci. 2014 Mar 7;8:71. doi: 10.3389/fncel.2014.00071. eCollection 2014.
6
Inter-channel scaffolding of presynaptic CaV2.2 via the C terminal PDZ ligand domain.
Biol Open. 2013 Apr 9;2(5):492-8. doi: 10.1242/bio.20134267. Print 2013 May 15.
8
α-Neurexins Together with α2δ-1 Auxiliary Subunits Regulate Ca Influx through Ca2.1 Channels.
J Neurosci. 2018 Sep 19;38(38):8277-8294. doi: 10.1523/JNEUROSCI.0511-18.2018. Epub 2018 Aug 13.
9
The Nanophysiology of Fast Transmitter Release.
Trends Neurosci. 2016 Mar;39(3):183-197. doi: 10.1016/j.tins.2016.01.005. Epub 2016 Feb 16.
10
The transmitter release-site CaV2.2 channel cluster is linked to an endocytosis coat protein complex.
Eur J Neurosci. 2007 Aug;26(3):560-74. doi: 10.1111/j.1460-9568.2007.05681.x.

引用本文的文献

1
Distinct active zone protein machineries mediate Ca channel clustering and vesicle priming at hippocampal synapses.
Nat Neurosci. 2024 Sep;27(9):1680-1694. doi: 10.1038/s41593-024-01720-5. Epub 2024 Aug 19.
4
Effect of semaglutide and empagliflozin on cognitive function and hippocampal phosphoproteomic in obese mice.
Front Pharmacol. 2023 Mar 17;14:975830. doi: 10.3389/fphar.2023.975830. eCollection 2023.
5
Presynaptic voltage-gated calcium channels in the auditory brainstem.
Mol Cell Neurosci. 2021 Apr;112:103609. doi: 10.1016/j.mcn.2021.103609. Epub 2021 Mar 1.
6
Neurotransmitter Release Site Replenishment and Presynaptic Plasticity.
Int J Mol Sci. 2020 Dec 30;22(1):327. doi: 10.3390/ijms22010327.
7
Interactions of Rabconnectin-3 with Cav2 calcium channels.
Mol Brain. 2019 Jun 28;12(1):62. doi: 10.1186/s13041-019-0483-y.
8
Molecular Characterization of an SV Capture Site in the Mid-Region of the Presynaptic CaV2.1 Calcium Channel C-Terminal.
Front Cell Neurosci. 2018 May 11;12:127. doi: 10.3389/fncel.2018.00127. eCollection 2018.
10
The Calcium Channel C-Terminal and Synaptic Vesicle Tethering: Analysis by Immuno-Nanogold Localization.
Front Cell Neurosci. 2017 Mar 30;11:85. doi: 10.3389/fncel.2017.00085. eCollection 2017.

本文引用的文献

1
Inter-channel scaffolding of presynaptic CaV2.2 via the C terminal PDZ ligand domain.
Biol Open. 2013 Apr 9;2(5):492-8. doi: 10.1242/bio.20134267. Print 2013 May 15.
2
Nanodomain coupling at an excitatory cortical synapse.
Curr Biol. 2013 Feb 4;23(3):244-9. doi: 10.1016/j.cub.2012.12.007. Epub 2012 Dec 27.
3
Voltage-dependent calcium channels at the plasma membrane, but not vesicular channels, couple exocytosis to endocytosis.
Cell Rep. 2012 Jun 28;1(6):632-8. doi: 10.1016/j.celrep.2012.04.011. Epub 2012 May 31.
4
RIM genes differentially contribute to organizing presynaptic release sites.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11830-5. doi: 10.1073/pnas.1209318109. Epub 2012 Jul 2.
5
Regulation of synaptic vesicle docking by different classes of macromolecules in active zone material.
PLoS One. 2012;7(3):e33333. doi: 10.1371/journal.pone.0033333. Epub 2012 Mar 16.
7
RIM determines Ca²+ channel density and vesicle docking at the presynaptic active zone.
Neuron. 2011 Jan 27;69(2):304-16. doi: 10.1016/j.neuron.2010.12.014.
8
9
N-type Ca2+ channels carry the largest current: implications for nanodomains and transmitter release.
Nat Neurosci. 2010 Nov;13(11):1348-50. doi: 10.1038/nn.2657. Epub 2010 Oct 17.
10
Long C terminal splice variant CaV2.2 identified in presynaptic membrane by mass spectrometric analysis.
Channels (Austin). 2010 Jan-Feb;4(1):58-62. doi: 10.4161/chan.4.1.10364. Epub 2010 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验