Suppr超能文献

硅基上精细圆柱形玻璃微毛细管的整体集成用于生物分子的电泳分离。

Monolithic integration of fine cylindrical glass microcapillaries on silicon for electrophoretic separation of biomolecules.

机构信息

Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

出版信息

Biomicrofluidics. 2012 Jul 20;6(3):36501. doi: 10.1063/1.4739075. Print 2012 Sep.

Abstract

We demonstrate monolithic integration of fine cylindrical glass microcapillaries (diameter ∼1 μm) on silicon and evaluate their performance for electrophoretic separation of biomolecules. Such microcapillaries are achieved through thermal reflow of a glass layer on microstructured silicon whereby slender voids are moulded into cylindrical tubes. The process allows self-enclosed microcapillaries with a uniform profile. A simplified method is also described to integrate the microcapillaries with a sample-injection cross without the requirement of glass etching. The 10-mm-long microcapillaries sustain field intensities up to 90 kV/m and limit the temperature excursions due to Joule heating to a few degrees Celsius only.

摘要

我们展示了精细圆柱形玻璃微毛细管(直径约 1μm)在硅片上的整体集成,并评估了它们在生物分子电泳分离方面的性能。这种微毛细管是通过在微结构硅片上的玻璃层进行热回流来实现的,在此过程中,细长的空隙被模制成圆柱形管。该工艺允许自封闭的微毛细管具有均匀的轮廓。还描述了一种简化的方法来将微毛细管与样品注入交叉集成,而无需进行玻璃蚀刻。10 毫米长的微毛细管可承受高达 90kV/m 的场强,并且由于焦耳加热引起的温度变化仅局限在几度范围内。

相似文献

2
Cylindrical glass nanocapillaries patterned via coarse lithography (>1 μm) for biomicrofluidic applications.
Biomicrofluidics. 2012 Dec 13;6(4):46502. doi: 10.1063/1.4771691. eCollection 2012.
3
An Investigation of Processes for Glass Micromachining.
Micromachines (Basel). 2016 Mar 22;7(3):51. doi: 10.3390/mi7030051.
4
Continuous-Flow Electrophoresis of DNA and Proteins in a Two-Dimensional Capillary-Well Sieve.
Anal Chem. 2017 Sep 19;89(18):10022-10028. doi: 10.1021/acs.analchem.7b02484. Epub 2017 Aug 29.
7
Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices.
Electrophoresis. 2001 Oct;22(18):3930-8. doi: 10.1002/1522-2683(200110)22:18<3930::AID-ELPS3930>3.0.CO;2-Q.
8
Microfluidic integration of substantially round glass capillaries for lateral patch clamping on chip.
Lab Chip. 2007 Oct;7(10):1357-66. doi: 10.1039/b707439e. Epub 2007 Jul 17.
10
Optimization of a microfluidic electrophoretic immunoassay using a Peltier cooler.
J Chromatogr A. 2014 Nov 7;1367:154-60. doi: 10.1016/j.chroma.2014.09.040. Epub 2014 Sep 22.

引用本文的文献

1
Cylindrical glass nanocapillaries patterned via coarse lithography (>1 μm) for biomicrofluidic applications.
Biomicrofluidics. 2012 Dec 13;6(4):46502. doi: 10.1063/1.4771691. eCollection 2012.

本文引用的文献

1
A prototypic system of parallel electrophoresis in multiple capillaries coupled with microwell arrays.
Electrophoresis. 2011 Nov;32(23):3324-30. doi: 10.1002/elps.201100339. Epub 2011 Nov 10.
2
Solvent-programmed microchip open-channel electrochromatography.
Anal Chem. 1998 Aug 1;70(15):3291-7. doi: 10.1021/ac971367y.
3
A prefilled, ready-to-use electrophoresis based lab-on-a-chip device for monitoring lithium in blood.
Lab Chip. 2010 Jul 21;10(14):1799-806. doi: 10.1039/c003899g. Epub 2010 Jun 7.
4
Hybrid integrated PDMS microfluidics with a silica capillary.
Lab Chip. 2010 Jun 7;10(11):1468-71. doi: 10.1039/b925132d. Epub 2010 Mar 10.
5
Lateral patch-clamping in a standard 1536-well microplate format.
Lab Chip. 2010 Apr 21;10(8):1044-50. doi: 10.1039/b922051h. Epub 2010 Jan 20.
7
Enhanced electrophoretic DNA separation in photonic crystal fiber.
Anal Bioanal Chem. 2009 Jul;394(6):1707-10. doi: 10.1007/s00216-009-2833-6. Epub 2009 May 27.
8
Glass coating for PDMS microfluidic channels by sol-gel methods.
Lab Chip. 2008 Apr;8(4):516-8. doi: 10.1039/b800001h. Epub 2008 Feb 20.
10
Faster and improved microchip electrophoresis using a capillary bundle.
Electrophoresis. 2007 Dec;28(24):4765-8. doi: 10.1002/elps.200700259.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验