State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China.
PLoS One. 2013 Jul 10;8(7):e67213. doi: 10.1371/journal.pone.0067213. Print 2013.
The 21-residue compact tertiapin-Q (TPNQ) toxin, a derivative of honey bee toxin tertiapin (TPN), is a potent blocker of inward-rectifier K(+) channel subtype, rat Kir1.1 (rKir1.1) channel, and their interaction mechanism remains unclear.
Based on the flexible feature of potassium channel turrets, a good starting rKir1.1 channel structure was modeled for the accessibility of rKir1.1 channel turrets to TPNQ toxin. In combination with experimental alanine scanning mutagenesis data, computational approaches were further used to obtain a reasonable TPNQ toxin-rKir1.1 channel complex structure, which was completely different from the known binding modes between animal toxins and potassium channels. TPNQ toxin mainly adopted its helical domain as the channel-interacting surface together with His12 as the pore-blocking residue. The important Gln13 residue mainly contacted channel residues near the selectivity filter, and Lys20 residue was surrounded by a polar "groove" formed by Arg118, Thr119, Glu123, and Asn124 in the channel turret. On the other hand, four turrets of rKir1.1 channel gathered to form a narrow pore entryway for TPNQ toxin recognition. The Phe146 and Phe148 residues in the channel pore region formed strong hydrophobic protrusions, and produced dominant nonpolar interactions with toxin residues. These specific structure features of rKir1.1 channel vestibule well matched the binding of potent TPNQ toxin, and likely restricted the binding of the classical animal toxins.
CONCLUSIONS/SIGNIFICANCE: The TPNQ toxin-rKir1.1 channel complex structure not only revealed their unique interaction mechanism, but also would highlight the diverse animal toxin-potassium channel interactions, and elucidate the relative insensitivity of rKir1.1 channel towards animal toxins.
由蜜蜂毒素 tertiapin(TPN)衍生而来的 21 个氨基酸组成的紧凑 tertiapin-Q(TPNQ)毒素是一种有效的内向整流钾(K+)通道亚型,即大鼠 Kir1.1(rKir1.1)通道阻断剂,但其相互作用机制尚不清楚。
基于钾通道穹顶的灵活性特征,构建了一个良好的起始 rKir1.1 通道结构,以研究 rKir1.1 通道穹顶对 TPNQ 毒素的可及性。结合实验性丙氨酸扫描诱变数据,进一步使用计算方法获得了合理的 TPNQ 毒素-rKir1.1 通道复合物结构,该结构与已知的动物毒素与钾通道之间的结合模式完全不同。TPNQ 毒素主要采用其螺旋结构域作为与通道相互作用的表面,同时采用 His12 作为孔阻塞残基。重要的 Gln13 残基主要与靠近选择性过滤器的通道残基接触,Lys20 残基被 Arg118、Thr119、Glu123 和通道穹顶中的 Asn124 形成的极性“凹槽”所包围。另一方面,rKir1.1 通道的四个穹顶聚集在一起,形成一个狭窄的通道入口,用于 TPNQ 毒素的识别。通道孔区域的 Phe146 和 Phe148 残基形成强烈的疏水性突出,与毒素残基产生主要的非极性相互作用。这些 rKir1.1 通道入口的特定结构特征很好地匹配了强效 TPNQ 毒素的结合,并且可能限制了经典动物毒素的结合。
结论/意义:TPNQ 毒素-rKir1.1 通道复合物结构不仅揭示了它们独特的相互作用机制,而且突出了不同的动物毒素-钾通道相互作用,并阐明了 rKir1.1 通道对动物毒素相对不敏感的原因。