University Centre of Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy.
PLoS One. 2013 Jul 12;8(7):e68071. doi: 10.1371/journal.pone.0068071. Print 2013.
We consider modeling jointly microarray RNA expression and DNA copy number data. We propose Bayesian mixture models that define latent Gaussian probit scores for the DNA and RNA, and integrate between the two platforms via a regression of the RNA probit scores on the DNA probit scores. Such a regression conveniently allows us to include additional sample specific covariates such as biological conditions and clinical outcomes. The two developed methods are aimed respectively to make inference on differential behaviour of genes in patients showing different subtypes of breast cancer and to predict the pathological complete response (pCR) of patients borrowing strength across the genomic platforms. Posterior inference is carried out via MCMC simulations. We demonstrate the proposed methodology using a published data set consisting of 121 breast cancer patients.
我们考虑联合建模微阵列 RNA 表达和 DNA 拷贝数数据。我们提出了贝叶斯混合模型,为 DNA 和 RNA 定义潜在的高斯概率得分,并通过 RNA 概率得分与 DNA 概率得分的回归在两个平台之间进行整合。这种回归方便地允许我们包括其他样本特定的协变量,如生物学条件和临床结果。这两种方法的目的分别是对表现出不同乳腺癌亚型的患者中基因的差异行为进行推断,并通过跨基因组平台借用强度来预测患者的病理完全缓解 (pCR)。后验推断通过 MCMC 模拟进行。我们使用包含 121 名乳腺癌患者的已发表数据集来演示所提出的方法。