Suppr超能文献

用于DNA拷贝数和基因表达数据联合分析的双层混合模型。

A double-layered mixture model for the joint analysis of DNA copy number and gene expression data.

作者信息

Choi Hyungwon, Qin Zhaohui S, Ghosh Debashis

机构信息

Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

J Comput Biol. 2010 Feb;17(2):121-37. doi: 10.1089/cmb.2009.0019.

Abstract

Copy number aberration is a common form of genomic instability in cancer. Gene expression is closely tied to cytogenetic events by the central dogma of molecular biology, and serves as a mediator of copy number changes in disease phenotypes. Accordingly, it is of interest to develop proper statistical methods for jointly analyzing copy number and gene expression data. This work describes a novel Bayesian inferential approach for a double-layered mixture model (DLMM) which directly models the stochastic nature of copy number data and identifies abnormally expressed genes due to aberrant copy number. Simulation studies were conducted to illustrate the robustness of DLMM under various settings of copy number aberration frequency, confounding effects, and signal-to-noise ratio in gene expression data. Analysis of a real breast cancer data shows that DLMM is able to identify expression changes specifically attributable to copy number aberration in tumors and that a sample-specific index built based on the selected genes is correlated with relevant clinical information.

摘要

拷贝数畸变是癌症中基因组不稳定的一种常见形式。根据分子生物学的中心法则,基因表达与细胞遗传学事件密切相关,并在疾病表型中作为拷贝数变化的介导因素。因此,开发合适的统计方法来联合分析拷贝数和基因表达数据具有重要意义。这项工作描述了一种针对双层混合模型(DLMM)的新型贝叶斯推断方法,该模型直接对拷贝数数据的随机性质进行建模,并识别由于异常拷贝数导致的异常表达基因。进行了模拟研究以说明DLMM在拷贝数畸变频率、混杂效应和基因表达数据信噪比的各种设置下的稳健性。对真实乳腺癌数据的分析表明,DLMM能够识别肿瘤中特别归因于拷贝数畸变的表达变化,并且基于所选基因构建的样本特异性指数与相关临床信息相关。

相似文献

引用本文的文献

3
Characterizing Cancer-Specific Networks by Integrating TCGA Data.通过整合TCGA数据来表征癌症特异性网络。
Cancer Inform. 2015 Nov 23;13(Suppl 2):125-31. doi: 10.4137/CIN.S13776. eCollection 2014.
6
A Bayesian Graphical Model for Integrative Analysis of TCGA Data.用于TCGA数据综合分析的贝叶斯图形模型
IEEE Int Workshop Genomic Signal Process Stat. 2012 Dec;2012:135-138. doi: 10.1109/GENSIPS.2012.6507747.

本文引用的文献

9
CGHcall: calling aberrations for array CGH tumor profiles.CGHcall:用于阵列比较基因组杂交肿瘤图谱的畸变检测
Bioinformatics. 2007 Apr 1;23(7):892-4. doi: 10.1093/bioinformatics/btm030. Epub 2007 Jan 31.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验