Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Inorg Chem. 2013 Aug 5;52(15):8909-18. doi: 10.1021/ic401098x. Epub 2013 Jul 22.
We have prepared and thoroughly characterized, using X-ray crystallographic, spectroscopic, and computational methods, the diazide adduct of Fe(III)(dapsox)(H2O)2 [dapsox = 2,6-diacetylpyridinebis(semioxamazide)], (1), a low-molecular weight, functional analogue of iron superoxide dismutase (FeSOD). The X-ray crystal structure of the dimeric form of 1, (Na[Fe(III)(dapsox)(N3)2]·DMF)2 (2) shows two axially coordinated, symmetry inequivalent azides with differing Fe-N3 bond lengths and Fe-N-N2 bond angles. This inequivalence of the azide ligands likely reflects the presence of an interdimer hydrogen bonding interaction between a dapsox NH group and the coordinated nitrogen of one of the two azide ligands. Resonance Raman (rR) data obtained for frozen aqueous solution and solid-state samples of 2 indicate that the azides remain inequivalent in solution, suggesting that one of the azide ligands of 1 engages in an intermolecular hydrogen bonding interaction with a water molecule. Density functional theory (DFT) and time-dependent DFT calculations have been used to study two different computational models of 1, one using coordinates taken from the X-ray crystal structure of 2, and the other generated via DFT geometry optimization. An evaluation of these models on the basis of electronic absorption, magnetic circular dichroism, and rR data indicates that the crystal structure based model yields a more accurate electronic structure description of 1, providing further support for the proposed intermolecular hydrogen bonding of 1 in the solid state and in solution. An analysis of the experimentally validated DFT results for this model reveals that the azides have both σ- and π-bonding interactions with the Fe(III) center and that more negative charge is located on the Fe-bound, rather than on the terminal, nitrogen atom of each azide. These observations are reminiscent of the results previously reported for the azide adduct of FeSOD and provide clues regarding the origin of the high catalytic activity of Fe-dapsox for superoxide disproportionation.
我们已经使用 X 射线晶体学、光谱学和计算方法制备并彻底表征了Fe(III)(dapsox)(H2O)2的叠氮化物加合物(1),(dapsox = 2,6-二乙酰基吡啶双(半肟酰胺)),这是铁超氧化物歧化酶(FeSOD)的低分子量功能类似物。1 的二聚形式(Na[Fe(III)(dapsox)(N3)2]·DMF)2(2)的 X 射线晶体结构显示两个轴向配位的、不对称不等价的叠氮化物,具有不同的 Fe-N3 键长和 Fe-N-N2 键角。这种叠氮化物配体的不等价性可能反映了二聚体之间存在氢键相互作用,其中 dapsox NH 基团与两个叠氮化物配体之一的配位氮之间存在氢键相互作用。对于 2 的冷冻水溶液和固态样品获得的共振拉曼(rR)数据表明,在溶液中叠氮化物仍然不等价,这表明 1 的一个叠氮化物配体与水分子发生了分子间氢键相互作用。密度泛函理论(DFT)和时间相关 DFT 计算已用于研究 1 的两种不同计算模型,一种使用来自 2 的 X 射线晶体结构的坐标,另一种通过 DFT 几何优化生成。基于电子吸收、磁圆二色性和 rR 数据对这些模型进行评估表明,基于晶体结构的模型对 1 进行了更准确的电子结构描述,进一步支持 1 在固态和溶液中的分子间氢键的假设。对该模型进行实验验证的 DFT 结果分析表明,叠氮化物与 Fe(III)中心具有σ-和π-键合相互作用,并且更多的负电荷位于每个叠氮化物的 Fe 结合而不是末端氮原子上。这些观察结果与先前报道的 FeSOD 叠氮化物加合物的结果相似,为 Fe-dapsox 对超氧化物歧化的高催化活性的起源提供了线索。