Suppr超能文献

精神分裂症的全家族自动分类。

Family-wise automatic classification in schizophrenia.

机构信息

Department of Psychiatry, University Medical Center Utrecht, Rudolf Magnus Institute of Neuroscience, The Netherlands.

出版信息

Schizophr Res. 2013 Sep;149(1-3):108-11. doi: 10.1016/j.schres.2013.07.002. Epub 2013 Jul 20.

Abstract

Automatic classification of individuals at increased risk for schizophrenia can become an important screening method that allows for early intervention based on disease markers, if proven to be sufficiently accurate. Conventional classification methods typically consider information from single subjects, thereby ignoring (heritable) features of the person's relatives. In this paper we show that the inclusion of these features can lead to an increase in classification accuracy from 0.54 to 0.72 using a support vector machine model. This inclusion of contextual information is especially useful in diseases where the classification features carry a heritable component.

摘要

如果被证明足够准确,那么个体精神分裂症风险增加的自动分类可以成为一种重要的筛选方法,从而可以基于疾病标志物进行早期干预。传统的分类方法通常只考虑单个主体的信息,从而忽略了(可遗传的)个体亲属的特征。在本文中,我们表明,通过使用支持向量机模型,包含这些特征可以将分类准确性从 0.54 提高到 0.72。在分类特征具有遗传成分的疾病中,包含这种上下文信息尤其有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验