Dept. of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA. Electronic address: http://www.huffingtonpost.com/james-a-shapiro.
Phys Life Rev. 2013 Sep;10(3):287-323. doi: 10.1016/j.plrev.2013.07.001. Epub 2013 Jul 8.
The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences.
传统上,基因组被视为只读存储器 (ROM),其可通过复制错误和事故发生变化。在这篇综述中,我提出我们需要改变这种观点,将基因组理解为一个错综复杂的格式化读写 (RW) 数据存储系统,它不断受到细胞修饰和记录的影响。细胞在不断变化的条件下运行,并通过基因组记录不断自我修改。这些记录发生在三个不同的时间尺度上(细胞繁殖、多细胞发育和进化变化),并且在每个时间尺度上涉及多种不同的过程(形成核蛋白复合物、表观遗传格式化和 DNA 序列结构变化)。早在 20 世纪 30 年代的研究就表明,遗传变化是细胞介导过程的结果,而不仅仅是 DNA 的意外或损伤。这种关于基因组变化的细胞主动观点适用于从点突变到大规模基因组重排和全基因组加倍 (WGD) 的所有 DNA 序列变异尺度。这种控制 RW 基因组功能的主动细胞记录的概念转变对生命科学的所有领域都具有深远的影响。