Verma Samridhi, Singh Sandeep Kumar, Verma Priya Ranjan Prasad, Ahsan Mohd Neyaz
Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra , Ranchi, Jharkhand , India.
Drug Dev Ind Pharm. 2014 Oct;40(10):1358-70. doi: 10.3109/03639045.2013.819884. Epub 2013 Jul 23.
To design and develop liquid and solid self-nanoemulsifying drug delivery systems (SNEDDS and S-SNEDDS) of felodipine (FLD) using Box-Behnken design (BBD).
Solubility study was carried out in various vehicles. Ternary phase diagram was constructed to delineate the boundaries of the nanoemulsion domain. The content of formulation variables, X1 (Acconon E), X2 (Cremophor EL) and X3 (Lutrol E300) were optimized by assessment of 15 formulations (as per BBD) for mean globule sizes in Millipore water (Y1), 0.1 N HCl (Y2), phosphate buffer (pH 6.4) (Y3); emulsification time (Y4) and T85% (Y5). The responses (Y1-Y5) were evaluated statistically by analysis of variance and response surface plots to obtain optimum points. The optimized formulations were solidified by adsorption to solid carrier technique using Aerosil 200 (AER).
Transmission electron microscopy images confirmed the spherical shape of globules with the size range concordant with the globule size analysis by dynamic light scattering technique (<60 nm). The surface morphology of S-SNEDDS (before release) by scanning electron microscopy and atomic force microscopy indicated that SNEDDS are adsorbed uniformly on the surface of AER. The dried residue of S-SNEDDS (after release) revealed the presence of nanometric pores vacated by the previously adsorbed SNEDDS onto AER. Differential scanning calorimetry and X-ray powder diffraction studies illustrated the change of FLD from crystalline to amorphous state.
This study indicates that owing to nanosize, SNEDDS and S-SNEDDS of FLD have potential to enhance its absorption and may serve an efficient oral delivery.
采用Box-Behnken设计(BBD)设计并开发非洛地平(FLD)的液体和固体自纳米乳化药物递送系统(SNEDDS和S-SNEDDS)。
在多种载体中进行溶解度研究。构建三元相图以描绘纳米乳液区域的边界。通过评估15种制剂(根据BBD)的平均球粒尺寸(在微孔水中(Y1)、0.1 N HCl(Y2)、磷酸盐缓冲液(pH 6.4)(Y3))、乳化时间(Y4)和T85%(Y5),对制剂变量X1(Acconon E)、X2(聚氧乙烯蓖麻油EL)和X3(聚氧乙烯失水山梨醇单油酸酯E300)的含量进行优化。通过方差分析和响应面图对响应值(Y1 - Y5)进行统计学评估以获得最佳点。使用Aerosil 200(AER)通过吸附到固体载体技术将优化后的制剂固化。
透射电子显微镜图像证实了球粒的球形形状,其尺寸范围与通过动态光散射技术进行的球粒尺寸分析一致(<60 nm)。通过扫描电子显微镜和原子力显微镜对S-SNEDDS(释放前)的表面形态表明,SNEDDS均匀吸附在AER表面。S-SNEDDS(释放后)的干燥残渣显示存在先前吸附在AER上的SNEDDS留下的纳米级孔隙。差示扫描量热法和X射线粉末衍射研究表明FLD从结晶态转变为非晶态。
本研究表明,由于纳米尺寸,FLD的SNEDDS和S-SNEDDS有潜力增强其吸收,并可能实现高效的口服给药。