Suppr超能文献

一种用于 Bold 成像中模型比较的简单方法:奖励预测误差和奖励结果的特例。

A simple solution for model comparison in bold imaging: the special case of reward prediction error and reward outcomes.

机构信息

School of Kinesiology, University of Michigan Ann Arbor, MI, USA.

出版信息

Front Neurosci. 2013 Jul 19;7:116. doi: 10.3389/fnins.2013.00116. eCollection 2013.

Abstract

Conventional neuroimaging techniques provide information about condition-related changes of the BOLD (blood-oxygen-level dependent) signal, indicating only where and when the underlying cognitive processes occur. Recently, with the help of a new approach called "model-based" functional neuroimaging (fMRI), researchers are able to visualize changes in the internal variables of a time varying learning process, such as the reward prediction error or the predicted reward value of a conditional stimulus. However, despite being extremely beneficial to the imaging community in understanding the neural correlates of decision variables, a model-based approach to brain imaging data is also methodologically challenging due to the multicollinearity problem in statistical analysis. There are multiple sources of multicollinearity in functional neuroimaging including investigations of closely related variables and/or experimental designs that do not account for this. The source of multicollinearity discussed in this paper occurs due to correlation between different subjective variables that are calculated very close in time. Here, we review methodological approaches to analyzing such data by discussing the special case of separating the reward prediction error signal from reward outcomes.

摘要

传统的神经影像学技术提供了与 BOLD(血氧水平依赖)信号相关的条件变化的信息,仅指示潜在认知过程发生的位置和时间。最近,借助一种称为“基于模型”的功能神经影像学(fMRI)的新方法,研究人员能够可视化随时间变化的学习过程的内部变量的变化,例如奖励预测误差或条件刺激的预测奖励值。然而,尽管基于模型的方法对大脑成像数据的理解决策变量对成像界非常有益,但由于统计分析中的多重共线性问题,这种方法在方法上也具有挑战性。功能神经影像学中有多种多重共线性的来源,包括对密切相关的变量的研究和/或不考虑这一点的实验设计。本文讨论的多重共线性的来源是由于不同主观变量之间的相关性引起的,这些主观变量在时间上非常接近。在这里,我们通过讨论从奖励结果中分离奖励预测误差信号的特殊情况来讨论分析此类数据的方法学方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/345e/3715737/a5dd02dabf50/fnins-07-00116-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验