Suppr超能文献

基于模型的神经影像学方法:将强化学习理论与 fMRI 数据相结合。

Model-based approaches to neuroimaging: combining reinforcement learning theory with fMRI data.

机构信息

California Institute of Technology, Division of the Humanities and Social Sciences, Pasadena, CA 91125, USA.

Trinity College, Institute of Neuroscience, Dublin, Ireland.

出版信息

Wiley Interdiscip Rev Cogn Sci. 2010 Jul;1(4):501-510. doi: 10.1002/wcs.57. Epub 2010 Apr 2.

Abstract

The combination of functional magnetic resonance imaging (fMRI) with computational models for a given cognitive process provides a powerful framework for testing hypotheses about the neural computations underlying such processes in the brain. Here, we outline the steps involved in implementing this approach with reference to the application of reinforcement learning (RL) models that can account for human choice behavior during value-based decision making. The model generates internal variables which can be used to construct fMRI predictor variables and regressed against individual subjects' fMRI data. The resulting regression coefficients reflect the strength of the correlation with blood oxygenation level dependent (BOLD) activity and the relevant internal variables from the model. In the second part of this review, we describe human neuroimaging studies that have employed this analysis strategy to identify brain regions involved in the computations mediating reward-related decision making. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.

摘要

功能磁共振成像(fMRI)与特定认知过程的计算模型相结合,为检验大脑中这些过程的神经计算假设提供了一个强大的框架。在这里,我们参考可以解释人类在基于价值的决策过程中选择行为的强化学习(RL)模型,概述了实施这种方法的步骤。该模型生成内部变量,可用于构建 fMRI 预测变量,并与个体受试者的 fMRI 数据进行回归。所得回归系数反映了与血氧水平依赖(BOLD)活动和模型中相关内部变量的相关性强度。在本综述的第二部分,我们描述了采用这种分析策略的人类神经影像学研究,以确定介导与奖励相关的决策的计算的大脑区域。版权所有 © 2010 约翰威立父子有限公司。如需获取本文相关的更多资源,请访问 WIREs 网站。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验