Suppr超能文献

脑功能的稳态控制——理解癫痫发生的新方法。

Homeostatic control of brain function - new approaches to understand epileptogenesis.

机构信息

Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA.

出版信息

Front Cell Neurosci. 2013 Jul 16;7:109. doi: 10.3389/fncel.2013.00109. eCollection 2013.

Abstract

Neuronal excitability of the brain and ongoing homeostasis depend not only on intrinsic neuronal properties, but also on external environmental factors; together these determine the functionality of neuronal networks. Homeostatic factors become critically important during epileptogenesis, a process that involves complex disruption of self-regulatory mechanisms. Here we focus on the bioenergetic homeostatic network regulator adenosine, a purine nucleoside whose availability is largely regulated by astrocytes. Endogenous adenosine modulates complex network function through multiple mechanisms including adenosine receptor-mediated pathways, mitochondrial bioenergetics, and adenosine receptor-independent changes to the epigenome. Accumulating evidence from our laboratories shows that disruption of adenosine homeostasis plays a major role in epileptogenesis. Conversely, we have found that reconstruction of adenosine's homeostatic functions provides new hope for the prevention of epileptogenesis. We will discuss how adenosine-based therapeutic approaches may interfere with epileptogenesis on an epigenetic level, and how dietary interventions can be used to restore network homeostasis in the brain. We conclude that reconstruction of homeostatic functions in the brain offers a new conceptual advance for the treatment of neurological conditions which goes far beyond current target-centric treatment approaches.

摘要

大脑的神经元兴奋性和持续的动态平衡不仅取决于内在的神经元特性,还取决于外部环境因素;这些因素共同决定了神经元网络的功能。在癫痫发生的过程中,即涉及自我调节机制复杂破坏的过程中,稳态因素变得至关重要。在这里,我们重点关注作为生物能量稳态网络调节剂的腺苷,它是一种嘌呤核苷,其可用性在很大程度上受星形胶质细胞调节。内源性腺苷通过多种机制调节复杂的网络功能,包括腺苷受体介导的途径、线粒体生物能学以及与腺苷受体无关的表观遗传改变。我们实验室的累积证据表明,腺苷稳态的破坏在癫痫发生中起着主要作用。相反,我们发现重建腺苷的稳态功能为预防癫痫发生提供了新的希望。我们将讨论基于腺苷的治疗方法如何在表观遗传水平上干扰癫痫发生,以及饮食干预如何用于恢复大脑中的网络动态平衡。我们得出结论,重建大脑的稳态功能为治疗神经疾病提供了一个新的概念进展,远远超出了当前的以靶点为中心的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3cb/3712329/697a44536b41/fncel-07-00109-g001.jpg

相似文献

1
Homeostatic control of brain function - new approaches to understand epileptogenesis.
Front Cell Neurosci. 2013 Jul 16;7:109. doi: 10.3389/fncel.2013.00109. eCollection 2013.
2
The Biochemistry and Epigenetics of Epilepsy: Focus on Adenosine and Glycine.
Front Mol Neurosci. 2016 Apr 13;9:26. doi: 10.3389/fnmol.2016.00026. eCollection 2016.
3
Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis.
J Clin Invest. 2013 Aug;123(8):3552-63. doi: 10.1172/JCI65636. Epub 2013 Jul 25.
4
Role of adenosine in status epilepticus: a potential new target?
Epilepsia. 2013 Sep;54 Suppl 6(0 6):20-2. doi: 10.1111/epi.12268.
5
Adenosinergic signaling in epilepsy.
Neuropharmacology. 2016 May;104:131-9. doi: 10.1016/j.neuropharm.2015.08.046. Epub 2015 Sep 1.
6
Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase.
Cereb Cortex. 2014 Jan;24(1):67-80. doi: 10.1093/cercor/bhs284. Epub 2012 Sep 20.
7
Protective mechanisms of adenosine in neurons and glial cells.
Ann N Y Acad Sci. 1997 Oct 15;825:1-10. doi: 10.1111/j.1749-6632.1997.tb48409.x.
9
Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis.
Front Neurol. 2020 Nov 26;11:591690. doi: 10.3389/fneur.2020.591690. eCollection 2020.
10
The adenosine-mediated, neuronal-glial, homeostatic sleep response.
Curr Opin Neurobiol. 2017 Jun;44:236-242. doi: 10.1016/j.conb.2017.05.015. Epub 2017 Jun 19.

引用本文的文献

2
Krüppel-like factors: potential roles in blood-brain barrier dysfunction and epileptogenesis.
Acta Pharmacol Sin. 2024 Sep;45(9):1765-1776. doi: 10.1038/s41401-024-01285-w. Epub 2024 Apr 29.
4
Dynamic coupling between the central and autonomic cardiac nervous systems in patients with refractory epilepsy: A pilot study.
Front Neurol. 2022 Aug 10;13:904052. doi: 10.3389/fneur.2022.904052. eCollection 2022.
5
The potential role of DNA methylation as preventive treatment target of epileptogenesis.
Front Cell Neurosci. 2022 Jul 22;16:931356. doi: 10.3389/fncel.2022.931356. eCollection 2022.
8
Nucleic Acid Aptamers for Molecular Therapy of Epilepsy and Blood-Brain Barrier Damages.
Mol Ther Nucleic Acids. 2020 Mar 6;19:157-167. doi: 10.1016/j.omtn.2019.10.042. Epub 2019 Nov 15.
9
Epigenetics and epilepsy prevention: The therapeutic potential of adenosine and metabolic therapies.
Neuropharmacology. 2020 May 1;167:107741. doi: 10.1016/j.neuropharm.2019.107741. Epub 2019 Aug 13.
10
Effect of Interaction between Adenosine and Nitric Oxide on Central Nervous System Oxygen Toxicity.
Neurotox Res. 2019 Jul;36(1):193-203. doi: 10.1007/s12640-019-00025-x. Epub 2019 Mar 30.

本文引用的文献

1
Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis.
J Clin Invest. 2013 Aug;123(8):3552-63. doi: 10.1172/JCI65636. Epub 2013 Jul 25.
2
Adenosine kinase: exploitation for therapeutic gain.
Pharmacol Rev. 2013 Apr 16;65(3):906-43. doi: 10.1124/pr.112.006361. Print 2013 Jul.
4
Glial adenosine kinase--a neuropathological marker of the epileptic brain.
Neurochem Int. 2013 Dec;63(7):688-95. doi: 10.1016/j.neuint.2013.01.028. Epub 2013 Feb 4.
5
Glia and epilepsy: excitability and inflammation.
Trends Neurosci. 2013 Mar;36(3):174-84. doi: 10.1016/j.tins.2012.11.008. Epub 2013 Jan 5.
6
Metabolic epilepsy: an update.
Brain Dev. 2013 Oct;35(9):827-41. doi: 10.1016/j.braindev.2012.11.010. Epub 2012 Dec 27.
7
Molecular pathways controlling inhibitory receptor expression.
Epilepsia. 2012 Dec;53 Suppl 9(0 9):71-8. doi: 10.1111/epi.12036.
8
The emerging role of DNA methylation in epileptogenesis.
Epilepsia. 2012 Dec;53 Suppl 9:11-20. doi: 10.1111/epi.12031.
9
Mechanisms underlying blood-brain barrier dysfunction in brain pathology and epileptogenesis: role of astroglia.
Epilepsia. 2012 Nov;53 Suppl 6:53-9. doi: 10.1111/j.1528-1167.2012.03703.x.
10
Hippocampal sclerosis--origins and imaging.
Epilepsia. 2012 Sep;53 Suppl 4:19-33. doi: 10.1111/j.1528-1167.2012.03610.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验