Institute of Pharmacology and Neurosciences, Faculty of Medicine and.
Cereb Cortex. 2014 Jan;24(1):67-80. doi: 10.1093/cercor/bhs284. Epub 2012 Sep 20.
Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.
细胞外腺苷是神经元兴奋性的关键调节剂,由星形胶质细胞酶腺苷激酶(ADK)代谢。我们假设 ADK 可能通过同时影响多个下游途径成为基于腺苷的大脑稳态功能的上游调节剂。因此,我们研究了在 ADK 低表达或过表达的转基因小鼠中 ADK 表达、细胞外腺苷水平、突触传递、内在兴奋性和脑源性神经营养因子(BDNF)依赖性突触作用之间的关系。我们证明 ADK:1)通过微电极腺苷生物传感器评估,对腺苷的基础张力产生重要影响,以及刺激后的释放;2)决定紧张性腺苷依赖性突触抑制的程度,这与低释放概率的海马突触的差异可塑性相关;3)调节 BDNF 对海马突触传递的年龄依赖性影响,该作用依赖于腺苷 A2A 受体的共激活;4)影响 CA3 锥体神经元中 GABA A 受体介导的电流。我们得出结论,ADK 为大脑基于腺苷的稳态功能提供了重要的上游调节,这种机制对于作用于多种途径的腺苷的突触作用是必要和允许的。这些机制研究支持先前的治疗研究,并暗示 ADK 作为一种有前途的治疗靶点,可用于对多种神经疾病至关重要的多种神经元信号通路的上游控制。