Suppr超能文献

粒子、空穴和孤子:矩阵乘积态方法。

Particles, holes, and solitons: a matrix product state approach.

机构信息

Vienna Center for Quantum Science, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria.

出版信息

Phys Rev Lett. 2013 Jul 12;111(2):020402. doi: 10.1103/PhysRevLett.111.020402. Epub 2013 Jul 9.

Abstract

We introduce a variational method for calculating dispersion relations of translation invariant (1+1)-dimensional quantum field theories. The method is based on continuous matrix product states and can be implemented efficiently. We study the critical Lieb-Liniger model as a benchmark and excellent agreement with the exact solution is found. Additionally, we observe solitonic signatures of Lieb's type II excitation. In addition, a nonintegrable model is introduced where a U(1)-symmetry breaking term is added to the Lieb-Liniger Hamiltonian. For this model we find evidence of a nontrivial bound-state excitation in the dispersion relation.

摘要

我们介绍了一种计算平移不变(1+1)-维量子场论色散关系的变分方法。该方法基于连续矩阵乘积态,可以有效地实现。我们以临界李-林格模型为基准进行了研究,发现与精确解吻合得非常好。此外,我们还观察到了李的 II 型激发的孤子特征。此外,我们还引入了一个不可积模型,即在李-林格哈密顿量中添加 U(1)-对称破缺项。对于这个模型,我们在色散关系中发现了一个非平凡束缚态激发的证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验