IEEE Trans Cybern. 2013 Oct;43(5):1442-52. doi: 10.1109/TCYB.2013.2272636. Epub 2013 Jul 23.
Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.
人体姿态的精确估计可以显著增强对人类行为的分析,这是计算机视觉领域的一项基本任务。然而,现有的姿态估计方法无法处理各种人体姿态和外观。在本文中,我们提出了一种创新的基于 RGB-D 的姿态估计方法来应对这些挑战。通过利用 RGB-D 传感器可以实时获取的 RGB-D 信息,我们的方法对杂乱环境、光照变化和部分遮挡具有鲁棒性。具体来说,我们提出了基于 RGB-D 超像素的有效静态和运动线索提取方法,以减少深度数据的噪声。由于很难仅使用静态线索或运动线索独立地区分所有 360°(°)的姿态,因此我们建议使用动态贝叶斯网络系统(DBNS)来有效地利用静态和运动线索的互补性。为了验证我们提出的方法,我们构建了一个基于 RGB-D 的人体姿态数据集,该数据集涵盖了广泛的姿态和外观多样性。我们在该数据集上的大量实验评估证明了所提出方法的有效性和效率。