Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA.
PLoS One. 2013 Jul 23;8(7):e70278. doi: 10.1371/journal.pone.0070278. Print 2013.
High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF), are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation"), leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr) does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF). These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP) cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.
纳秒脉冲电场(nsPEF)是一种新型的模式,在细胞刺激和组织消融方面具有广阔的应用前景。纳秒脉冲具有非常短的持续时间(纳秒级)和非常高的电场强度。这些特性使得纳秒脉冲能够在细胞膜上产生纳米级的孔,从而导致细胞内外离子浓度失衡、渗透压改变和细胞死亡。然而,nsPEF 诱导细胞毒性的确切机制尚不清楚。
我们发现,在 U937 细胞中,60 或 300 纳秒脉冲诱导细胞死亡的主要原因是细胞膜完整性的丧失(“纳米电穿孔”),导致水的摄取、细胞肿胀和最终的膜破裂。这种早期的坏死性死亡大部分发生在 nsPEF 暴露后 1-2 小时内。水的摄取是由细胞内不可渗透孔的溶质存在驱动的,并且可以通过在培养基中添加不可渗透孔的溶质(如蔗糖)来平衡。蔗糖可以阻止肿胀并防止早期的坏死性死亡;然而,长期的细胞存活(24 和 48 小时)并没有显著改变。用蔗糖保护的细胞显示出更高比例的延迟死亡(nsPEF 后 6-24 小时)。这些细胞更常表现出早期凋亡标记染料 YO-PRO-1 的摄取阳性,同时对碘化丙啶保持不可渗透。这些细胞没有肿胀,而是经常发生细胞质的凋亡片段化。nsPEF 后 1 小时 Caspase 3/7 活性增加,2 小时检测到聚(ADP-核糖)聚合酶(PARP)的裂解。阳性对照的 staurosporine 处理细胞仅分别在 3 和 4 小时才出现这些凋亡迹象。
综上所述,nsPEF 暴露触发了坏死和凋亡两种途径。在标准细胞培养条件下,早期的坏死性死亡占主导地位,但从坏死中挽救的细胞最终仍会通过凋亡死亡。两种细胞死亡模式之间的平衡可以通过允许或阻止细胞肿胀来控制。