Suppr超能文献

家族 1 糖苷酶中的保守水分子:DXMS 和分子动力学研究。

Conserved water molecules in family 1 glycosidases: a DXMS and molecular dynamics study.

机构信息

UFIP, Université de Nantes, France.

出版信息

Biochemistry. 2013 Aug 27;52(34):5900-10. doi: 10.1021/bi400260b. Epub 2013 Aug 14.

Abstract

By taking advantage of the wealth of structural data available for family 1 glycoside hydrolases, a study of the conservation of internal water molecules found in this ubiquitous family of enzymes was undertaken. Strikingly, seven water molecules are observed in more than 90% of the known structures. To gain insight into their possible function, the water dynamics inside Thermus thermophilus β-glycosidase was probed using deuterium exchange mass spectroscopy, allowing the pinpointing of peptide L117-A125, which exchanges most of its amide hydrogens quickly in spite of the fact that it is for the most part buried in the crystal structure. To help interpret this result, a molecular dynamics simulation was performed whose analysis suggests that two water channels are involved in the process. The longest one (∼16 Å) extends between the protein surface and W120, whose side chain interacts with E164 (the acid-base residue involved in the catalytic mechanism), whereas the other channel allows for the exchange with the bulk of the highly conserved water molecules belonging to the hydration shell of D121, a deeply buried residue. Our simulation also shows that another chain of highly conserved water molecules, going from the protein surface to the bottom of the active site cleft close to the nucleophile residue involved in the catalytic mechanism, is able to exchange with the bulk on the nanosecond time scale. It is tempting to speculate that at least one of these three water channels could be involved in the function of family 1 glycoside hydrolases.

摘要

利用家族 1 糖苷水解酶丰富的结构数据,对该普遍存在的酶家族中内部水分子的保守性进行了研究。惊人的是,在超过 90%的已知结构中观察到了 7 个水分子。为了深入了解它们可能的功能,使用氘交换质谱法探测了嗜热脂肪芽孢杆菌β-糖苷酶内部的水分子动力学,从而精确定位了肽 L117-A125,尽管它大部分都埋藏在晶体结构中,但它的酰胺氢迅速交换。为了帮助解释这一结果,进行了分子动力学模拟,其分析表明,有两个水分子通道参与了这一过程。最长的一个(约 16 Å)从蛋白质表面延伸到 W120,其侧链与 E164(参与催化机制的酸碱残基)相互作用,而另一个通道则允许与高度保守的水分子进行交换,这些水分子属于 D121 的水合壳,D121 是一个深埋的残基。我们的模拟还表明,另一条高度保守的水分子链从蛋白质表面延伸到靠近参与催化机制的亲核残基的活性位点裂缝底部,能够在纳秒时间尺度上与主体进行交换。人们不禁要推测,这三个水分子通道中的至少一个可能与家族 1 糖苷水解酶的功能有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验