Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62271, Mexico.
Molecules. 2021 Oct 30;26(21):6586. doi: 10.3390/molecules26216586.
The proteins within the CAZy glycoside hydrolase family GH13 catalyze the hydrolysis of polysaccharides such as glycogen and starch. Many of these enzymes also perform transglycosylation in various degrees, ranging from secondary to predominant reactions. Identifying structural determinants associated with GH13 family reaction specificity is key to modifying and designing enzymes with increased specificity towards individual reactions for further applications in industrial, chemical, or biomedical fields. This work proposes a computational approach for decoding the determinant structural composition defining the reaction specificity. This method is based on the conservation of coevolving residues in spatial contacts associated with reaction specificity. To evaluate the algorithm, mutants of α-amylase () and glucanotransferase () from were constructed to modify the reaction specificity. The K98P/D99A/H222Q variant from doubled the transglycosydation/hydrolysis (T/H) ratio while the M279N variant from increased the hydrolysis/transglycosidation ratio five-fold. Molecular dynamic simulations of the variants indicated changes in flexibility that can account for the modified T/H ratio. An essential contribution of the presented computational approach is its capacity to identify residues outside of the active center that affect the reaction specificity.
CAZy 糖苷水解酶家族 GH13 中的蛋白质能够催化多糖(如糖原和淀粉)的水解。这些酶中的许多酶也具有不同程度的转糖苷作用,从次要反应到主要反应不等。确定与 GH13 家族反应特异性相关的结构决定因素是修改和设计具有更高特异性的酶的关键,以针对各个反应进一步应用于工业、化学或生物医学领域。这项工作提出了一种用于解码定义反应特异性的决定结构组成的计算方法。该方法基于与反应特异性相关的空间接触中共同进化残基的保守性。为了评估该算法,构建了来自 的 α-淀粉酶()和葡聚糖转移酶()的突变体,以修饰反应特异性。来自 的 K98P/D99A/H222Q 变体使转糖苷/水解(T/H)比值增加了一倍,而来自 的 M279N 变体使水解/转糖苷比值增加了五倍。变体的分子动力学模拟表明,灵活性的变化可以解释修改后的 T/H 比值。所提出的计算方法的一个重要贡献是其能够识别影响反应特异性的活性中心以外的残基。