Suppr超能文献

7T下血氧水平依赖性功能磁共振成像共振频率偏移及定量磁化率变化的研究

Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T.

作者信息

Bianciardi Marta, van Gelderen Peter, Duyn Jeff H

机构信息

Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Building 149, Room 2301, 13th Street, Charlestown, Boston, MA.

出版信息

Hum Brain Mapp. 2014 May;35(5):2191-205. doi: 10.1002/hbm.22320. Epub 2013 Jul 29.

Abstract

Although blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) experiments of brain activity generally rely on the magnitude of the signal, they also provide frequency information that can be derived from the phase of the signal. However, because of confounding effects of instrumental and physiological origin, BOLD related frequency information is difficult to extract and therefore rarely used. Here, we explored the use of high field (7 T) and dedicated signal processing methods to extract frequency information and use it to quantify and interpret blood oxygenation and blood volume changes. We found that optimized preprocessing improves detection of task-evoked and spontaneous changes in phase signals and resonance frequency shifts over large areas of the cortex with sensitivity comparable to that of magnitude signals. Moreover, our results suggest the feasibility of mapping BOLD quantitative susceptibility changes in at least part of the activated area and its largest draining veins. Comparison with magnitude data suggests that the observed susceptibility changes originate from neuronal activity through induced blood volume and oxygenation changes in pial and intracortical veins. Further, from frequency shifts and susceptibility values, we estimated that, relative to baseline, the fractional oxygen saturation in large vessels increased by 0.02-0.05 during stimulation, which is consistent to previously published estimates. Together, these findings demonstrate that valuable information can be derived from fMRI imaging of BOLD frequency shifts and quantitative susceptibility changes.

摘要

尽管依赖血氧水平的脑功能磁共振成像(BOLD-fMRI)实验通常依赖于信号强度,但它们也提供了可从信号相位中得出的频率信息。然而,由于仪器和生理因素的混杂效应,与BOLD相关的频率信息很难提取,因此很少被使用。在此,我们探索了利用高场强(7T)和专用信号处理方法来提取频率信息,并将其用于量化和解释血氧水平及血容量变化。我们发现,优化的预处理提高了对大脑皮层大面积区域任务诱发和自发的相位信号变化以及共振频率偏移的检测能力,其灵敏度与信号强度相当。此外,我们的结果表明,在至少部分激活区域及其最大引流静脉中绘制BOLD定量磁化率变化图是可行的。与信号强度数据的比较表明,观察到的磁化率变化源自神经元活动,是由软脑膜和皮质内静脉中血容量和氧合的变化所诱导的。此外,根据频率偏移和磁化率值,我们估计,相对于基线,在刺激过程中大血管内的血氧饱和度分数增加了0.02 - 0.05,这与先前发表的估计结果一致。总之,这些发现表明,可从BOLD频率偏移和定量磁化率变化的功能磁共振成像中获得有价值的信息。

相似文献

1
Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T.
Hum Brain Mapp. 2014 May;35(5):2191-205. doi: 10.1002/hbm.22320. Epub 2013 Jul 29.
5
Volumetric BOLD fMRI simulation: from neurovascular coupling to multivoxel imaging.
BMC Med Imaging. 2012 Apr 23;12:8. doi: 10.1186/1471-2342-12-8.
7
Comparing hand movement rate dependence of cerebral blood volume and BOLD responses at 7T.
Neuroimage. 2021 Feb 1;226:117623. doi: 10.1016/j.neuroimage.2020.117623. Epub 2020 Dec 8.
9
Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences.
Neuroimage. 2004 Oct;23(2):613-24. doi: 10.1016/j.neuroimage.2004.06.021.
10
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
J Cereb Blood Flow Metab. 2012 Jul;32(7):1188-206. doi: 10.1038/jcbfm.2012.23. Epub 2012 Mar 7.

引用本文的文献

1
Integrating brainstem and cortical functional architectures.
Nat Neurosci. 2024 Dec;27(12):2500-2511. doi: 10.1038/s41593-024-01787-0. Epub 2024 Oct 16.
2
Integrating brainstem and cortical functional architectures.
Res Sq. 2023 Nov 28:rs.3.rs-3569352. doi: 10.21203/rs.3.rs-3569352/v1.
3
Integrating brainstem and cortical functional architectures.
bioRxiv. 2023 Oct 26:2023.10.26.564245. doi: 10.1101/2023.10.26.564245.
4
Whole-brain studies of spontaneous behavior in head-fixed rats enabled by zero echo time MB-SWIFT fMRI.
Neuroimage. 2022 Apr 15;250:118924. doi: 10.1016/j.neuroimage.2022.118924. Epub 2022 Jan 19.
5
Healthy dietary intake moderates the effects of age on brain iron concentration and working memory performance.
Neurobiol Aging. 2021 Oct;106:183-196. doi: 10.1016/j.neurobiolaging.2021.06.016. Epub 2021 Jun 22.
6
Phase fMRI defines brain resting-state functional hubs within central and posterior regions.
Brain Struct Funct. 2021 Jul;226(6):1925-1941. doi: 10.1007/s00429-021-02301-z. Epub 2021 May 29.
7
Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat.
Neuroimage. 2020 Feb 1;206:116338. doi: 10.1016/j.neuroimage.2019.116338. Epub 2019 Nov 12.
8
Brainstem neuroimaging of nociception and pain circuitries.
Pain Rep. 2019 Aug 7;4(4):e745. doi: 10.1097/PR9.0000000000000745. eCollection 2019 Jul-Aug.
9
Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI.
Front Neurosci. 2019 Mar 18;13:204. doi: 10.3389/fnins.2019.00204. eCollection 2019.

本文引用的文献

1
Phase stability in fMRI time series: effect of noise regression, off-resonance correction and spatial filtering techniques.
Neuroimage. 2012 Feb 15;59(4):3748-61. doi: 10.1016/j.neuroimage.2011.10.095. Epub 2011 Nov 4.
2
Phase-based regional oxygen metabolism (PROM) using MRI.
Magn Reson Med. 2012 Mar;67(3):669-78. doi: 10.1002/mrm.23050. Epub 2011 Jun 28.
3
Negative BOLD-fMRI signals in large cerebral veins.
J Cereb Blood Flow Metab. 2011 Feb;31(2):401-12. doi: 10.1038/jcbfm.2010.164. Epub 2010 Sep 22.
4
Susceptibility mapping in the human brain using threshold-based k-space division.
Magn Reson Med. 2010 May;63(5):1292-304. doi: 10.1002/mrm.22334.
6
MRI estimation of global brain oxygen consumption rate.
J Cereb Blood Flow Metab. 2010 Sep;30(9):1598-607. doi: 10.1038/jcbfm.2010.49. Epub 2010 Apr 21.
7
Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data.
Magn Reson Med. 2009 Dec;62(6):1510-22. doi: 10.1002/mrm.22135.
8
On the contribution of deoxy-hemoglobin to MRI gray-white matter phase contrast at high field.
Neuroimage. 2010 Jan 1;49(1):193-8. doi: 10.1016/j.neuroimage.2009.07.017. Epub 2009 Jul 18.
9
Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study.
Magn Reson Imaging. 2009 Oct;27(8):1019-29. doi: 10.1016/j.mri.2009.02.004. Epub 2009 Apr 17.
10
Phase vs. magnitude information in functional magnetic resonance imaging time series: toward understanding the noise.
Magn Reson Imaging. 2009 Oct;27(8):1046-57. doi: 10.1016/j.mri.2009.02.006. Epub 2009 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验