Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy.
Stem Cells. 2013 Nov;31(11):2506-16. doi: 10.1002/stem.1485.
Neural stem cells are highly susceptible to radiogenic DNA damage, however, little is known about their mechanisms of DNA damage response (DDR) and the long-term consequences of genotoxic exposure. Patched1 heterozygous mice (Ptc1(+/-)) provide a powerful model of medulloblastoma (MB), a frequent pediatric tumor of the cerebellum. Irradiation of newborn Ptc1(+/-) mice dramatically increases the frequency and shortens the latency of MB. In this model, we investigated the mechanisms through which multipotent neural progenitors (NSCs) and fate-restricted progenitor cells (PCs) of the cerebellum respond to DNA damage induced by radiation, and the long-term developmental and oncogenic consequences. These responses were assessed in mice exposed to low (0.25 Gy) or high (3 Gy) radiation doses at embryonic day 13.5 (E13.5), when NSCs giving rise to the cerebellum are specified but the external granule layer (EGL) has not yet formed, or at E16.5, during the expansion of granule PCs to form the EGL. We found crucial differences in DDR and apoptosis between NSCs and fate-restricted PCs, including lack of p21 expression in NSCs. NSCs also appear to be resistant to oncogenesis from low-dose radiation exposure but more vulnerable at higher doses. In addition, the pathway to DNA repair and the pattern of oncogenic alterations were strongly dependent on age at exposure, highlighting a differentiation-stage specificity of DNA repair pathways in NSCs and PCs. These findings shed light on the mechanisms used by NSCs and PCs to maintain genome integrity during neurogenesis and may have important implications for radiation risk assessment and for development of targeted therapies against brain tumors.
神经干细胞对放射性 DNA 损伤高度敏感,然而,人们对其 DNA 损伤反应 (DDR) 机制以及遗传毒性暴露的长期后果知之甚少。 patched1 杂合子 (Ptc1(+/-)) 为髓母细胞瘤 (MB) 提供了一个强大的模型,MB 是小脑的一种常见小儿肿瘤。新生 Ptc1(+/-) 小鼠的照射显著增加了 MB 的频率并缩短了潜伏期。在该模型中,我们研究了多能神经祖细胞 (NSC) 和小脑命运受限祖细胞 (PC) 对辐射诱导的 DNA 损伤的反应机制,以及长期发育和致癌后果。这些反应在胚胎第 13.5 天 (E13.5) 暴露于低 (0.25 Gy) 或高 (3 Gy) 辐射剂量的小鼠中进行了评估,此时 NSCs 开始分化为小脑,但外部颗粒层 (EGL) 尚未形成,或在 E16.5 时,颗粒细胞 PC 扩张以形成 EGL。我们发现 NSCs 和命运受限 PC 之间的 DDR 和细胞凋亡存在关键差异,包括 NSCs 中缺乏 p21 表达。NSC 似乎对低剂量辐射暴露的致癌作用具有抵抗力,但在更高剂量下更易受到影响。此外,DNA 修复途径和致癌改变的模式强烈依赖于暴露时的年龄,突出了 NSCs 和 PC 中 DNA 修复途径的分化阶段特异性。这些发现揭示了 NSCs 和 PC 在神经发生过程中维持基因组完整性所使用的机制,这可能对辐射风险评估和针对脑肿瘤的靶向治疗具有重要意义。