Endocrinology Unit, Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
Physiol Rev. 2013 Jul;93(3):1139-206. doi: 10.1152/physrev.00020.2012.
Glucocorticoid action on target tissues is determined by the density of "nuclear" receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental "programming." The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues.
糖皮质激素对靶组织的作用取决于“核”受体的密度和两种 11β-羟类固醇脱氢酶(11β-HSD)同工酶的细胞内代谢,这两种同工酶催化活性皮质醇和皮质酮与惰性可的松和 11-去氢皮质酮的相互转化。11β-HSD1 是大多数完整细胞中主要的还原酶,催化活性糖皮质激素的再生,从而放大细胞作用。11β-HSD1 广泛表达于肝脏、脂肪组织、肌肉、胰岛、成年大脑、炎症细胞和性腺。11β-HSD1 在肥胖症中脂肪组织中选择性升高,导致代谢并发症。同样,11β-HSD1 在衰老大脑中升高,加剧与糖皮质激素相关的认知下降。11β-HSD1 的缺乏或选择性抑制可改善啮齿动物模型和人类临床试验中的多种代谢综合征参数,并可改善衰老过程中的认知功能。抑制剂在人类治疗中的疗效尚不清楚。11β-HSD2 是一种高亲和力的脱氢酶,可使糖皮质激素失活。在远曲小管中,11β-HSD2 确保只有醛固酮是盐皮质激素受体(MR)的激动剂。11β-HSD2 抑制或基因缺失导致明显的盐皮质激素过多和高血压,这是由于糖皮质激素对肾脏 MR 的不适当激活。胎盘和胎儿也高度表达 11β-HSD2,通过使糖皮质激素失活,防止胎儿组织过早成熟和随后的发育“编程”。11β-HSD2 作为编程标志物的作用正在被探索。因此,11β-HSD 阐明了内源性控制的新兴生物学,为人类发病机制提供了重要的见解,并提供了新的组织特异性治疗途径。