Department of Chemistry, Stanford University, Stanford, California 94305, USA.
J Am Chem Soc. 2013 Aug 21;135(33):12212-5. doi: 10.1021/ja4064525. Epub 2013 Aug 7.
Kinetic measurements on single-turnover processes in laccase established fast type-1 Cu to trinuclear Cu cluster (TNC) intramolecular electron transfer (IET) in the reduction of the native intermediate (NI), the fully oxidized form of the enzyme formed immediately after O-O bond cleavage in the mechanism of O2 reduction. Alternatively, slow IET kinetics was observed in the reduction of the resting enzyme, which involves proton-coupled electron transfer on the basis of isotope measurements. The >10(3) difference between the IET rates for these two processes confirms that the NI, rather than the resting enzyme that has been defined by crystallography, is the fully oxidized form of the TNC in catalytic turnover. Computational modeling showed that reduction of NI is fast because of the larger driving force associated with a more favorable proton affinity of its μ3-oxo moiety generated by reductive cleavage of the O-O bond. This defines a unifying mechanism in which reductive cleavage of the O-O bond is coupled to rapid IET in the multicopper oxidases.
在单 turnover 过程的动力学测量中,建立了漆酶中快速类型 1 Cu 到三核 Cu 簇(TNC)的分子内电子转移(IET),在 O2 还原的机制中,该转移发生在 O-O 键断裂后,酶的天然中间产物(NI)被还原。或者,在酶的静止状态下观察到缓慢的 IET 动力学,这是基于同位素测量的质子偶联电子转移。这两个过程的 IET 速率之间的 >10(3)差异证实,NI 而不是晶体学定义的静止酶,是 TNC 在催化周转中的完全氧化形式。计算建模表明,NI 的还原速度很快,因为与 O-O 键的还原断裂产生的 μ3-氧部分的更有利的质子亲和力相关的更大驱动力。这定义了一个统一的机制,其中 O-O 键的还原断裂与多铜氧化酶中的快速 IET 耦合。