Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Japan.
Development. 2013 Sep;140(17):3565-76. doi: 10.1242/dev.094045. Epub 2013 Jul 31.
Epigenetic modifications influence gene expression and chromatin remodeling. In embryonic pluripotent stem cells, these epigenetic modifications have been extensively characterized; by contrast, the epigenetic events of tissue-specific stem cells are poorly understood. Here, we define a new epigenetic shift that is crucial for differentiation of murine spermatogonia toward meiosis. We have exploited a property of incomplete cytokinesis, which causes male germ cells to form aligned chains of characteristic lengths, as they divide and differentiate. These chains revealed the stage of spermatogenesis, so the epigenetic differences of various stages could be characterized. Single, paired and medium chain-length spermatogonia not expressing Kit (a marker of differentiating spermatogonia) showed no expression of Dnmt3a2 and Dnmt3b (two de novo DNA methyltransferases); they also lacked the transcriptionally repressive histone modification H3K9me2. By contrast, spermatogonia consisting of ~8-16 chained cells with Kit expression dramatically upregulated Dnmt3a2/3b expression and also displayed increased H3K9me2 modification. To explore the function of these epigenetic changes in spermatogonia in vivo, the DNA methylation machinery was destabilized by ectopic Dnmt3b expression or Np95 ablation. Forced Dnmt3b expression induced expression of Kit; whereas ablation of Np95, which is essential for maintaining DNA methylation, interfered with differentiation and viability only after spermatogonia become Kit positive. These data suggest that the epigenetic status of spermatogonia shifts dramatically during the Kit-negative to Kit-positive transition. This shift might serve as a switch that determines whether spermatogonia self-renew or differentiate.
表观遗传修饰影响基因表达和染色质重塑。在胚胎多能干细胞中,这些表观遗传修饰已经得到了广泛的研究;相比之下,组织特异性干细胞的表观遗传事件则知之甚少。在这里,我们定义了一个新的表观遗传转变,它对精原细胞向减数分裂的分化至关重要。我们利用了不完全胞质分裂的特性,这种特性导致雄性生殖细胞在分裂和分化时形成特征长度的对齐链。这些链揭示了精子发生的阶段,因此可以对各个阶段的表观遗传差异进行特征化。不表达 Kit(分化精原细胞的标志物)的单个、配对和中等长度精原细胞不表达 Dnmt3a2 和 Dnmt3b(两种从头 DNA 甲基转移酶);它们也缺乏转录抑制性组蛋白修饰 H3K9me2。相比之下,由 ~8-16 个带有 Kit 表达的链状细胞组成的精原细胞显著上调了 Dnmt3a2/3b 的表达,并显示出增加的 H3K9me2 修饰。为了探索这些表观遗传变化在体内精原细胞中的功能,通过异位表达 Dnmt3b 或 Np95 消融来破坏 DNA 甲基化机制。强制表达 Dnmt3b 诱导 Kit 的表达;而 Np95 的消融,它对维持 DNA 甲基化是必不可少的,仅在精原细胞成为 Kit 阳性后才会干扰分化和生存能力。这些数据表明,精原细胞的表观遗传状态在 Kit 阴性到 Kit 阳性的转变过程中发生了剧烈的变化。这种转变可能是一个决定精原细胞自我更新还是分化的开关。