Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
J Phys Chem B. 2013 Aug 29;117(34):9851-6. doi: 10.1021/jp404788t. Epub 2013 Aug 16.
G-quadruplex nucleic acids represent a unique avenue for the building of electrically conductive wires. These four-stranded structures are formed through the stacking of multiple planar guanine assemblies termed G-tetrads. The diverse folding patterns of G-quadruplexes allow for several geometries to be adopted by stacked guanine bases within the core and at the dimeric interface of these structures. It is currently not clear how different G-tetrad stacking arrangements affect electron hole mobility through a G-quadruplex wire. Using a combined quantum mechanics and molecular dynamics approach, we demonstrate that the electron-hole transfer rates within the G-tetrad stacks vary greatly for different stacking geometries. We identify a distinguished structure that allows for strong electronic coupling and thus enhanced molecular electric conductance. We also demonstrate the importance of sampling a large number of geometries when considering the bulk properties of such systems. Hole hopping within single G-tetrads is slower by at least two orders of magnitude than between stacked guanines; therefore, hole jumping within individual tetrads should not affect the hole mobility in G-quadruplexes. The results of this study suggest engineering G-tetrads with continuous 5/6-ring stacking from an assembly of single guanosine analogs or through modification of the backbone in G-rich DNA sequences.
G-四链体核酸代表了构建导电金属丝的独特途径。这些四链结构是通过多个平面鸟嘌呤组装体(称为 G-四联体)的堆积形成的。G-四链体的多种折叠模式允许堆叠的鸟嘌呤碱基在核心和这些结构的二聚体界面采用几种几何形状。目前尚不清楚不同的 G-四联体堆积排列如何影响通过 G-四链体金属丝的电子空穴迁移率。使用量子力学和分子动力学相结合的方法,我们证明了不同堆积几何形状下 G-四联体堆积中电子空穴转移速率有很大差异。我们确定了一种独特的结构,它允许强电子耦合,从而增强分子电导率。我们还证明了当考虑此类系统的体性质时,对大量结构进行采样的重要性。单个 G-四联体中的空穴跳跃至少慢两个数量级,因此单个四联体中的空穴跳跃不应影响 G-四链体中的空穴迁移率。这项研究的结果表明,可以通过组装单个鸟嘌呤类似物或通过修饰富含鸟嘌呤的 DNA 序列中的骨架来设计具有连续 5/6-环堆积的 G-四联体。