School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
Phys Rev Lett. 2013 Jul 19;111(3):036104. doi: 10.1103/PhysRevLett.111.036104. Epub 2013 Jul 17.
The stacking orders in layered hexagonal boron nitride bulk and bilayers are studied using high-level ab initio theory [local second-order Møller-Plesset perturbation theory (LMP2)]. Our results show that both electrostatic and London dispersion interactions are responsible for interlayer distance and stacking order, with AA' being the most stable one. The minimum energy sliding path includes only the AA' high-symmetry stacking, and the energy barrier is 3.4 meV per atom for the bilayer. State-of-the-art density functionals with and without London dispersion correction fail to correctly describe the interlayer energies with the exception of a Perdew-Burke-Ernzerhof functional intended for solid state and surface systems that agrees very well with our LMP2 results and experiment.
使用高精度的第一性原理理论[局域二阶 Møller-Plesset 微扰理论(LMP2)]研究了分层六方氮化硼体相和双层中的堆积顺序。我们的结果表明,层间距离和堆积顺序与静电和伦敦色散相互作用均有关,其中 AA'是最稳定的。最小能量滑移路径仅包含 AA'高对称堆积,双层的能量势垒为每个原子 3.4 毫电子伏特。带有和不带有伦敦色散修正的最先进密度泛函除了用于固态和表面体系的 Perdew-Burke-Ernzerhof 泛函外,都不能正确描述层间能量,该泛函与我们的 LMP2 结果和实验非常吻合。