Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.
Phys Rev Lett. 2010 Jul 23;105(4):046801. doi: 10.1103/PhysRevLett.105.046801. Epub 2010 Jul 19.
The interlayer sliding energy landscape of hexagonal boron nitride (h-BN) is investigated via a van der Waals corrected density functional theory approach. It is found that the main role of the van der Waals forces is to anchor the layers at a fixed distance, whereas the electrostatic forces dictate the optimal stacking mode and the interlayer sliding energy. A nearly free-sliding path is identified, along which band gap modulations of ∼0.6 eV are obtained. We propose a simple geometric model that quantifies the registry matching between the layers and captures the essence of the corrugated h-BN interlayer energy landscape. The simplicity of this phenomenological model opens the way to the modeling of complex layered structures, such as carbon and boron nitride nanotubes.
通过范德华修正密度泛函理论方法研究了六方氮化硼(h-BN)的层间滑移能量景观。研究发现,范德华力的主要作用是将层固定在一定的距离,而静电力则决定了最佳的堆叠模式和层间滑移能量。确定了一条几乎自由滑动的路径,在此路径上获得了约 0.6 eV 的带隙调制。我们提出了一个简单的几何模型,量化了层之间的配准匹配,并捕捉了波纹 h-BN 层间能量景观的本质。这种唯象模型的简单性为建模复杂的层状结构(如碳和氮化硼纳米管)开辟了道路。