The Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology , 180 Udyog Vihar, Phase 1, Gurgaon-122016, Haryana, India.
Bioconjug Chem. 2013 Sep 18;24(9):1468-84. doi: 10.1021/bc300664k. Epub 2013 Aug 21.
We have synthesized two series of bile acid tamoxifen conjugates using three bile acids lithocholic acid (LCA), deoxycholic acid (DCA), and cholic acid (CA). These bile acid-tamoxifen conjugates possess 1, 2, and 3 tamoxifen molecules attached to hydroxyl groups of bile acids having free acid and amine functionalities at the tail region of bile acids. The in vitro anticancer activities of these bile acid-tamoxifen conjugates show that the free amine headgroup based cholic acid-tamoxifen conjugate (CA-Tam3-Am) is the most potent anticancer conjugate as compared to the parent drug tamoxifen and other acid and amine headgroup based bile acid-tamoxifen conjugates. The cholic acid-tamoxifen conjugate (CA-Tam3-Am) bearing three tamoxifen molecules shows enhanced anticancer activities in both estrogen receptor +ve and estrogen receptor -ve breast cancer cell lines. The enhanced anticancer activity of CA-Tam3-Am is due to more favorable irreversible electrostatic interactions followed by intercalation of these conjugates in hydrophobic core of membrane lipids causing increase in membrane fluidity. Annexin-FITC based FACS analysis showed that cells undergo apoptosis, and cell cycle analysis showed the arrest of cells in sub G0 phase. ROS assays showed a high amount of generation of ROS independent of ER status of the cell line indicating changes in mitochondrial membrane fluidity upon the uptake of the conjugate that further leads to the release of cytochrome c, a direct and indirect regulator of ROS. The mechanistic studies for apoptosis using PCR and western analysis showed apoptotsis by intrinsic and extrinsic pathways in ER +ve MCF-7 cells and by only an intrinsic pathway in ER -ve cells. In vivo studies in the 4T1 tumor model showed that CA-Tam3-Am is more potent than tamoxifen. These studies showed that bile acids provide a new scaffold for high drug loading and that their anticancer activities strongly depend on charge and hydrophobicity of lipid-drug conjugates.
胆酸(CA)、脱氧胆酸(DCA)和石胆酸(LCA),合成了两种系列的胆汁酸他莫昔芬缀合物。这些胆汁酸-他莫昔芬缀合物具有 1、2 和 3 个他莫昔芬分子,连接在胆汁酸的羟基上,胆汁酸的尾部区域具有游离酸和胺官能团。这些胆汁酸-他莫昔芬缀合物的体外抗癌活性表明,与母体药物他莫昔芬和其他酸和胺头基胆汁酸-他莫昔芬缀合物相比,具有游离胺头基的胆酸-他莫昔芬缀合物(CA-Tam3-Am)是最有效的抗癌缀合物。具有三个他莫昔芬分子的胆酸-他莫昔芬缀合物(CA-Tam3-Am)在雌激素受体阳性和雌激素受体阴性乳腺癌细胞系中表现出增强的抗癌活性。CA-Tam3-Am 的增强抗癌活性是由于更有利的不可逆静电相互作用,随后这些缀合物在膜脂疏水核心中插入,导致膜流动性增加。 Annexin-FITC 基于 FACS 的分析表明细胞发生凋亡,细胞周期分析表明细胞在 sub G0 期停滞。ROS 测定显示 ROS 的产生量很高,与细胞系的 ER 状态无关,表明在摄取缀合物后线粒体膜流动性发生变化,进一步导致细胞色素 c 的释放,细胞色素 c 是 ROS 的直接和间接调节剂。使用 PCR 和 western 分析进行的凋亡机制研究表明,在 ER+ MCF-7 细胞中通过内在和外在途径发生凋亡,而在 ER-细胞中仅通过内在途径发生凋亡。在 4T1 肿瘤模型中的体内研究表明,CA-Tam3-Am 比他莫昔芬更有效。这些研究表明,胆汁酸为高药物载量提供了新的支架,并且它们的抗癌活性强烈依赖于脂质-药物缀合物的电荷和疏水性。