Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska Street 141, 02-507 Warsaw, Poland.
Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):4352-60. doi: 10.1016/j.msec.2013.06.025. Epub 2013 Jun 28.
Biodegradable materials, which are currently available for bone tissue regeneration, still have limitations regarding their degradation rate, mechanical stability and/or biological response. Thus, a novel generation of materials for bioactive bone scaffolds is needed that triggers hydroxyapatite formation and can be tailored to suit application-specific requirements. In this study we developed ternary bioactive composite materials composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), calcium silicate and poly(lactide-co-glycolide) (PHBV/CS/PLGA), which merged the good bioactivity of CS/PHBV composite and the improved degradation velocity of PHBV/PLGA blend. Bioactive character of all composites was proven by formation of hydroxyapatite-like crystals after already one week of incubation in simulated body fluid. Addition of PLGA significantly increased initial ultimate tensile strength (UTS0) and Young's modulus of the ternary composites from 14.3±1.1 MPa (binary composite) to 22.3±2.6 MPa and 1.23±0.05 GPa up to 1.64±0.14 GPa, respectively. Furthermore the degradation rate (measured as a decrease of UTS during degradation) could be successfully tailored and was in range of -0.033 UTS0 to -0.118 UTS0 MPa/week. The bioacceptance of the materials was proven in vitro using 2-D (conventional setup) and 3-D (multicellular spheroids) human bone marrow stromal cell cultures.
可生物降解材料目前可用于骨组织再生,但它们在降解速率、机械稳定性和/或生物响应方面仍存在局限性。因此,需要开发新一代的生物活性骨支架材料,这种材料能触发羟基磷灰石的形成,并能根据特定应用的要求进行定制。在本研究中,我们开发了由聚(3-羟基丁酸-co-3-羟基戊酸)、硅酸钙和聚(乳酸-co- 乙交酯)(PHBV/CS/PLGA)组成的三元生物活性复合材料,将 CS/PHBV 复合材料的良好生物活性与 PHBV/PLGA 共混物的改善降解速度相结合。所有复合材料的生物活性特征均通过在模拟体液中孵育一周后形成类羟基磷灰石晶体得到证明。PLGA 的添加显著提高了三元复合材料的初始极限拉伸强度(UTS0)和杨氏模量,从 14.3±1.1 MPa(二元复合材料)分别提高到 22.3±2.6 MPa 和 1.23±0.05 GPa 至 1.64±0.14 GPa。此外,降解速率(通过降解过程中 UTS 的降低来测量)可以成功地进行定制,范围为-0.033 UTS0 至-0.118 UTS0 MPa/周。通过二维(常规设置)和三维(多细胞球体)人骨髓基质细胞培养,体外证明了这些材料的生物可接受性。