Suppr超能文献

PFKFB3 驱动的糖酵解在血管发芽中的作用。

Role of PFKFB3-driven glycolysis in vessel sprouting.

机构信息

Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium.

出版信息

Cell. 2013 Aug 1;154(3):651-63. doi: 10.1016/j.cell.2013.06.037.

Abstract

Vessel sprouting by migrating tip and proliferating stalk endothelial cells (ECs) is controlled by genetic signals (such as Notch), but it is unknown whether metabolism also regulates this process. Here, we show that ECs relied on glycolysis rather than on oxidative phosphorylation for ATP production and that loss of the glycolytic activator PFKFB3 in ECs impaired vessel formation. Mechanistically, PFKFB3 not only regulated EC proliferation but also controlled the formation of filopodia/lamellipodia and directional migration, in part by compartmentalizing with F-actin in motile protrusions. Mosaic in vitro and in vivo sprouting assays further revealed that PFKFB3 overexpression overruled the pro-stalk activity of Notch, whereas PFKFB3 deficiency impaired tip cell formation upon Notch blockade, implying that glycolysis regulates vessel branching.

摘要

血管生成由迁移尖端和增殖的茎内皮细胞 (ECs) 控制,这受遗传信号(如 Notch)的控制,但尚不清楚代谢是否也调节这一过程。在这里,我们表明 ECs 依赖糖酵解而不是氧化磷酸化来产生 ATP,并且 ECs 中糖酵解激活剂 PFKFB3 的缺失会损害血管形成。在机制上,PFKFB3 不仅调节 EC 的增殖,而且还控制丝状伪足/片状伪足的形成和定向迁移,部分是通过在运动突起中与 F-肌动蛋白分隔开来实现的。体外和体内镶嵌发芽试验进一步表明,PFKFB3 的过表达推翻了 Notch 的促茎活性,而 PFKFB3 缺陷在 Notch 阻断时会损害尖端细胞的形成,这意味着糖酵解调节血管分支。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验