Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan, Republic of China.
Phys Chem Chem Phys. 2013 Sep 28;15(36):14973-85. doi: 10.1039/c3cp51903a.
Multidimensional local mode calculations are performed for OH stretching vibrations of the gas phase OH(-)(H2O)2 and OH(-)(H2O)2·Ar clusters in the 1000-4000 cm(-1) energy range. The potential energies and the associated dipole moment values are calculated with MP2/6-311++G(3df,3pd). To fully take into account the anharmonic effects for the stretching vibrations of the ionic hydrogen bonded OHs (IHB OHs), those donating H to the O atom in OH(-), the vibrational Hamiltonian represented by the discrete variable representation (DVR) technique is diagonalized without using any truncation/contraction scheme for the basis. The necessary potential energies and dipole moment values at the DVR grid points are supplied by the polynomial inter- and extrapolations based on the values calculated at fine spatial grid points. We found that the peaks at 2700 cm(-1) should be assigned to the first overtone (ν: 0 → 2) of the IHB OH stretching vibrations rather than the previous assignment of the fundamental of the IHB OH based on harmonic frequencies. The relevant fundamental peaks should be observed around 1600-2000 cm(-1) where no experimental observation has been performed. This prediction of the fundamental peak positions leads to a simple correlation between the magnitude of the red-shift of the IHB OH stretching vibrational peak position and the cluster size of OH(-)(H2O)n for n = 1-3. Furthermore, to determine important contributions toward the assignment of the experimental spectrum, detailed analyses are performed from the following 3 viewpoints: (1) mode coupling between the inter water IHB OH stretching vibrations, (2) coupling between the IHB OH and the low-frequency OO stretching vibrations and (3) argon attachment to OH(-)(H2O)2. We found that the overall shape of the vibrational spectrum can be essentially described by considering only factor (1). However, fairly large peak shifts are caused by factors (2) and (3).
对气相 OH(-)(H2O)2 和 OH(-)(H2O)2·Ar 团簇的 OH 伸缩振动进行了多维局部模式计算。在 1000-4000 cm(-1) 的能量范围内,用 MP2/6-311++G(3df,3pd) 计算了势能和相关的偶极矩值。为了充分考虑到离子氢键 OH(IHB OH)伸缩振动的非谐效应,即向 OH(-)中 O 原子提供 H 的那些 OH,通过离散变量表示(DVR)技术对角化振动哈密顿量,而无需使用任何截断/收缩方案对基进行处理。在 DVR 网格点处所需的势能和偶极矩值由基于在精细空间网格点处计算的值的多项式内插和外推来提供。我们发现,2700 cm(-1)处的峰值应该归因于 IHB OH 伸缩振动的第一泛频(ν:0 → 2),而不是以前基于谐频对 IHB OH 基的分配。相关的基频峰值应该在 1600-2000 cm(-1)左右观察到,而实验上尚未进行观察。这种对基频峰位置的预测导致了 IHB OH 伸缩振动峰位置的红移幅度与 OH(-)(H2O)n 的团簇大小(n = 1-3)之间的简单相关性。此外,为了确定对实验光谱分配的重要贡献,从以下 3 个观点进行了详细分析:(1)水分子间 IHB OH 伸缩振动的模式耦合,(2)IHB OH 与低频 OO 伸缩振动的耦合,(3)氩气附着到 OH(-)(H2O)2。我们发现,仅考虑因素(1)就可以基本描述振动光谱的整体形状。然而,相当大的峰位移是由因素(2)和(3)引起的。