Freeman Lita A
Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Methods Mol Biol. 2013;1027:3-17. doi: 10.1007/978-1-60327-369-5_1.
Gene transcripts and transcript variants must be cloned to characterize gene function and regulation. However, obtaining full-length cDNAs with accurate sequences from the 5' end through to the 3' end can be challenging. Here we describe a reverse-transcriptase-based method for obtaining full-length cDNAs using the SMARTer ("Switching Mechanism At RNA Termini") RACE technology developed by Clontech. RNA is isolated from the tissue of interest and annealed to a primer (a modified oligo(dT) primer for polyA+ transcripts; random hexamers or a gene-specific primer for polyA- transcripts). A modified MMLV-reverse transcriptase uses the primer to initiate cDNA synthesis from RNA transcript(s) annealed to the primer and continues cDNA synthesis (reverse transcription) towards the 5' end of the transcript(s). Importantly, this reverse transcriptase possesses terminal transferase activity, so when it reaches the 5' end of a transcript it adds a 3-5 residue "tail" to the newly synthesized cDNA strand. Included in the reverse transcriptase reaction mix is an oligonucleotide containing a sequence tag as well as a terminal series of modified bases that anneal to the 3-5 residue tail on the newly synthesized cDNA. The reverse transcriptase proceeds from the end of the transcript onwards into the modified bases and the rest of the sequence-tagged oligo. The newly synthesized cDNA now has a sequence tag attached to it and can be used as a template for PCR, with one primer complementary to the sequence tag and the second primer specific to the gene of interest. The fragment can be cloned and sequenced or just sequenced directly. If high-quality, undegraded RNA is used, obtaining the true 5' end of a transcript is greatly enhanced. In combination with 3' RACE, full-length transcripts are easily cloned. This method provides sequence information on important regulatory regions, such as 5' and 3' UTRs and flanking regions, and is ideal for detecting transcript variants, including those with alternative transcriptional start sites, alternative splicing, and/or alternative polyadenylation.
基因转录本和转录变体必须进行克隆,以表征基因功能和调控。然而,从5'端到3'端获得具有准确序列的全长cDNA可能具有挑战性。在这里,我们描述了一种基于逆转录酶的方法,使用Clontech公司开发的SMARTer(“RNA末端切换机制”)RACE技术来获得全长cDNA。从感兴趣的组织中分离RNA,并使其与引物退火(用于多聚腺苷酸加尾转录本的修饰寡聚dT引物;用于多聚腺苷酸减尾转录本的随机六聚体或基因特异性引物)。一种修饰的MMLV逆转录酶使用该引物从与引物退火的RNA转录本开始进行cDNA合成,并朝着转录本的5'端继续进行cDNA合成(逆转录)。重要的是,这种逆转录酶具有末端转移酶活性,因此当它到达转录本的5'端时,会在新合成的cDNA链上添加一个3 - 5个残基的“尾巴”。逆转录酶反应混合物中包含一个含有序列标签以及一系列修饰碱基的寡核苷酸,这些修饰碱基与新合成cDNA上的3 - 5个残基尾巴退火。逆转录酶从转录本的末端开始进入修饰碱基和序列标签寡核苷酸的其余部分。新合成的cDNA现在附着有一个序列标签,可以用作PCR模板,其中一个引物与序列标签互补,第二个引物对感兴趣的基因具有特异性。该片段可以进行克隆和测序,或者直接进行测序。如果使用高质量、未降解的RNA,获得转录本真实5'端的可能性会大大提高。与3'RACE相结合,可以轻松克隆全长转录本。该方法提供了关于重要调控区域的序列信息,如5'和3'UTR以及侧翼区域,非常适合检测转录变体,包括那些具有替代转录起始位点、替代剪接和/或替代聚腺苷酸化的变体。