Whiteman David N, Venable Demetrius D, Walker Monique, Cadirola Martin, Sakai Tetsu, Veselovskii Igor
NASA/GSFC, Greenbelt, Maryland 20771, USA.
Appl Opt. 2013 Aug 1;52(22):5376-84. doi: 10.1364/AO.52.005376.
Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.
利用激光雷达技术对拉曼水汽光谱进行窄带检测时,会引发对拉曼光谱温度依赖性的关注。各个研究团队针对这一问题采取了不同方法,要么试图将温度依赖性降至可忽略不计的程度,要么对存在的任何程度的温度依赖性进行校正。传统上执行这两种操作的技术都需要精确测量激光输出波长和水汽光谱通带,其综合不确定度约为0.01纳米。然而,干涉滤光片中心波长和激光输出波长的不确定度可能达到或超过这个值。这些综合不确定度会导致拉曼激光雷达水汽测量中温度依赖性大小的不确定度达到3%或更高。我们在此提出一种用于精确确定拉曼激光雷达水汽测量温度依赖性的替代方法。这种替代方法需要在扫描拉曼水汽Q分支部分的通道通带时,利用激光雷达获取连续的大气廓线。这种扫描可以通过倾斜调谐干涉滤光片或扫描光谱仪的输出实现。通过这个过程,可以以比标准实验室技术更高的精度确定通道通带相对于激光输出波长的光谱位置,从而识别出透射强度的峰值。根据使用此处所述技术确定的水汽信号强度曲线峰值以及对大气温度的大致了解,可以以0.5%或更高的精度确定给定拉曼激光雷达廓线的温度依赖性。第一作者可提供一个展示此处所用计算的Mathematica笔记本。