Suppr超能文献

基于遗传基因变异分析的生存预测

Survival prediction based on inherited gene variation analysis.

作者信息

Cicek Mine S, Maurer Matthew J, Goode Ellen L

机构信息

Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA.

出版信息

Methods Mol Biol. 2013;1049:53-64. doi: 10.1007/978-1-62703-547-7_5.

Abstract

There is a significant variation of outcome among ovarian cases. Clinical features such as age, stage, comorbidities, or degree of debulking are known prognostic factors for the disease. However, additional variation remains unexplained, some of which may be due to inherited factors. Here, we describe identification of survival-associated inherited variants in ovarian cancer that can enhance our current prognostic capabilities.

摘要

卵巢癌病例的预后存在显著差异。年龄、分期、合并症或减瘤程度等临床特征是该疾病已知的预后因素。然而,仍有一些额外的差异无法解释,其中一些可能归因于遗传因素。在此,我们描述了卵巢癌中与生存相关的遗传变异的鉴定,这些变异可以增强我们目前的预后评估能力。

相似文献

6
Common variation in Nemo-like kinase is associated with risk of ovarian cancer.Nemo 样激酶的常见变异与卵巢癌风险相关。
Cancer Epidemiol Biomarkers Prev. 2012 Mar;21(3):523-8. doi: 10.1158/1055-9965.EPI-11-0797. Epub 2012 Jan 17.

本文引用的文献

2
Cancer statistics, 2012.癌症统计数据,2012 年。
CA Cancer J Clin. 2012 Jan-Feb;62(1):10-29. doi: 10.3322/caac.20138. Epub 2012 Jan 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验