School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China.
ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7170-5. doi: 10.1021/am401505t. Epub 2013 Aug 5.
Highly ordered hierarchical TiO2 nanostructures involving primary honeycomb and secondary nanoparticles and nanowires are prepared by a two-step facile process. The TiO2 nanotube arrays grow first on Ti foil through anodization. After the wet-chemical reaction of the TiO2 nanotube arrays with alkaline and acid solution in turn, the hierarchical nanostructures wire-in-honeycomb and porous honeycomb are obtained by a dissolution-coagulation and dissolution-adsorption mechanism, respectively. The power conversion efficiency of the hierarchical TiO2 honeycomb nanostructures for the dye-sensitized solar cells (DSCs) shows a significant improvement, as high as 5.73%, increased by 1.42 times compared with that of TiO2 nanotube arrays. The performance improvement of DSCs based on the hierarchical nanostructures is attributed to the increase in the specific surface area.
高度有序的分级 TiO2 纳米结构,包括初级蜂窝和次级纳米粒子和纳米线,是通过两步简便的方法制备的。TiO2 纳米管阵列首先通过阳极氧化在 Ti 箔上生长。然后,通过 TiO2 纳米管阵列与碱性和酸性溶液的湿化学反应,分别通过溶解-凝聚和溶解-吸附机制,得到了分级纳米结构的线-蜂窝和多孔蜂窝。对于染料敏化太阳能电池 (DSC),分级 TiO2 蜂窝纳米结构的功率转换效率显著提高,高达 5.73%,比 TiO2 纳米管阵列提高了 1.42 倍。基于分级纳米结构的 DSCs 性能的提高归因于比表面积的增加。