Suppr超能文献

用于视觉模式检测的神经群体模型。

A neural population model for visual pattern detection.

机构信息

Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, USA.

出版信息

Psychol Rev. 2013 Jul;120(3):472-96. doi: 10.1037/a0033136.

Abstract

Pattern detection is the bedrock of modern vision science. Nearly half a century ago, psychophysicists advocated a quantitative theoretical framework that connected visual pattern detection with its neurophysiological underpinnings. In this theory, neurons in primary visual cortex constitute linear and independent visual channels whose output is linked to choice behavior in detection tasks via simple read-out mechanisms. This model has proven remarkably successful in accounting for threshold vision. It is fundamentally at odds, however, with current knowledge about the neurophysiological underpinnings of pattern vision. In addition, the principles put forward in the model fail to generalize to suprathreshold vision or perceptual tasks other than detection. We propose an alternative theory of detection in which perceptual decisions develop from maximum-likelihood decoding of a neurophysiologically inspired model of population activity in primary visual cortex. We demonstrate that this theory explains a broad range of classic detection results. With a single set of parameters, our model can account for several summation, adaptation, and uncertainty effects, thereby offering a new theoretical interpretation for the vast psychophysical literature on pattern detection.

摘要

模式检测是现代视觉科学的基础。近半个世纪前,心理生理学家提倡了一种定量理论框架,将视觉模式检测与其神经生理学基础联系起来。在这个理论中,初级视觉皮层中的神经元构成了线性和独立的视觉通道,其输出通过简单的读出机制与检测任务中的选择行为相关联。这个模型在解释阈下视觉方面非常成功。然而,它与当前关于模式视觉的神经生理学基础的知识存在根本冲突。此外,该模型提出的原理不能推广到阈上视觉或检测以外的其他感知任务。我们提出了一种替代的检测理论,其中感知决策是从对初级视觉皮层中群体活动的神经生理学启发模型的最大似然解码中发展而来的。我们证明,这个理论解释了广泛的经典检测结果。通过一组参数,我们的模型可以解释几种求和、适应和不确定性效应,从而为模式检测的大量心理物理学文献提供了一种新的理论解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验