Suppr超能文献

Morphology of the claw closer muscle in two estuarine crab species (Crustacea, Varunidae): an ultrastructural study.

作者信息

Longo María Victoria, Díaz Alcira Ofelia

机构信息

Institute of Marine and Coastal Research, National University of Mar del Plata, Mar del Plata, Buenos Aires, Argentina.

出版信息

Zoolog Sci. 2013 Aug;30(8):663-9. doi: 10.2108/zsj.30.663.

Abstract

We analyzed the ultrastructural features of the claw closer muscles in two estuarine crabs, Cyrtograpsus angulatus and Neohelice granulata, by transmission electron microscopy. Adult male crabs at intermolt stage were collected in the Mar Chiquita Coastal Lagoon (Buenos Aires, Argentina). The muscle fibers of both species showed evident striations, peripheral and intermyofibrillar nuclei, clefts in continuity with T and Z tubules, sarcoplasmic reticulum and T tubules forming dyads and triads usually located between the A and I bands, and mitochondria located mainly beneath the sarcolemma. Glycogen was observed as diffuse, small particles among myofilaments. The claw closer muscle of C. angulatus exhibited two fiber types: one with relatively fast-contracting fibers (shorter sarcomeres, myofilaments with an ordered arrangement, lineal Z discs, a well-developed sarcotubular system) and fatigue-resistant (numerous large mitochondria); and the other type, with slower-contracting fibers (longer sarcomeres, less orderly arranged myofilaments, wavy Z discs, a less developed sarcotubular system) and less resistant to fatigue (lower mitochondrial density). N. granulata showed only the slow, less resistant to fatigue type. The fibers less resistant to fatigue and more slowly contracting would presumably be used primarily for displays and agonistic interactions, whereas fast fibers with abundant mitochondria would be associated with continuous movements during feeding and grooming.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验