Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.
J Phys Chem B. 2013 Sep 5;117(35):10071-9. doi: 10.1021/jp401662z. Epub 2013 Aug 23.
The (6-4) photolyases are blue-light-activated enzymes that selectively bind to DNA and initiate splitting of mutagenic thymine (6-4) thymine photoproducts (T(6-4)T-PP) via photoinduced electron transfer from flavin adenine dinucleotide anion (FADH(-)) to the lesion triggering repair. In the present work, the repair mechanism after the initial electron transfer and the effect of the protein/DNA environment are investigated theoretically by means of hybrid quantum mechanical/molecular mechanical (QM/MM) simulations using X-ray structure of the enzyme-DNA complex. By comparison of three previously proposed repair mechanisms, we found that the lowest activation free energy is required for the pathway in which the key step governing the repair photocycle is electron transfer coupled with the proton transfer from the protonated histidine, His365, to the N3' nitrogen of the pyrimidone thymine. The transfer simultaneously occurs with concerted intramolecular OH transfer without formation of an oxetane or isolated water molecule intermediate. In contrast to previously suggested mechanisms, this newly identified pathway requires neither a subsequent two-photon process nor electronic excitation of the photolesion.
(6-4)光解酶是一种蓝光激活的酶,能够特异性地结合 DNA,并通过黄素腺嘌呤二核苷酸阴离子(FADH(-))向损伤部位的光诱导电子转移,启动对诱变胸腺嘧啶(6-4)胸腺嘧啶光产物(T(6-4)T-PP)的分裂,从而引发修复。在本工作中,通过使用 X 射线酶-DNA 复合物结构的混合量子力学/分子力学(QM/MM)模拟,从理论上研究了初始电子转移后的修复机制以及蛋白质/DNA 环境的影响。通过比较之前提出的三种修复机制,我们发现,对于控制修复光循环的关键步骤是电子转移与质子从质子化组氨酸 His365 转移到嘧啶酮胸腺嘧啶的 N3'氮的过程,该途径需要的最低活化自由能。同时发生协同的分子内 OH 转移,而没有形成噁唑烷或孤立水分子中间体。与之前提出的机制不同,这个新确定的途径既不需要随后的双光子过程,也不需要光损伤的电子激发。