Suppr超能文献

使用图像处理技术结合决策树算法在喉频闪镜视频中自动识别常见声带疾病。

Using image processing technology combined with decision tree algorithm in laryngeal video stroboscope automatic identification of common vocal fold diseases.

机构信息

Graduate Institute of Automation and Control, National Taiwan University of Science and Technology, Taipei 106, Taiwan.

出版信息

Comput Methods Programs Biomed. 2013 Oct;112(1):228-36. doi: 10.1016/j.cmpb.2013.06.021. Epub 2013 Jul 31.

Abstract

This study used the actual laryngeal video stroboscope videos taken by physicians in clinical practice as the samples for experimental analysis. The samples were dynamic vocal fold videos. Image processing technology was used to automatically capture the image of the largest glottal area from the video to obtain the physiological data of the vocal folds. In this study, an automatic vocal fold disease identification system was designed, which can obtain the physiological parameters for normal vocal folds, vocal paralysis and vocal nodules from image processing according to the pathological features. The decision tree algorithm was used as the classifier of the vocal fold diseases. The identification rate was 92.6%, and the identification rate with an image recognition improvement processing procedure after classification can be improved to 98.7%. Hence, the proposed system has value in clinical practices.

摘要

本研究使用医师在临床实践中实际拍摄的频闪喉镜视频作为实验分析的样本。这些样本是动态声带视频。本研究使用图像处理技术自动从视频中捕捉最大声门区的图像,以获取声带的生理数据。本研究设计了一种自动声带疾病识别系统,可以根据病变特征从图像处理中获得正常声带、声带麻痹和声带小结的生理参数。决策树算法作为声带疾病的分类器,识别率为 92.6%,经过分类后的图像识别改进处理程序,识别率可提高至 98.7%。因此,该系统在临床实践中具有应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验