Suppr超能文献

采用神经网络和蒙特卡罗模拟方法研究植物修复污染土壤中铜浓度的变异性。

Neural network and Monte Carlo simulation approach to investigate variability of copper concentration in phytoremediated contaminated soils.

机构信息

ISTO, UMR 7327 - CNRS/Université d'Orléans, Campus Géosciences, 1A, rue de la Férollerie, 45071 Orleans Cedex 2, France.

出版信息

J Environ Manage. 2013 Nov 15;129:134-42. doi: 10.1016/j.jenvman.2013.07.003. Epub 2013 Aug 1.

Abstract

The statistical variation of soil properties and their stochastic combinations may affect the extent of soil contamination by metals. This paper describes a method for the stochastic analysis of the effects of the variation in some selected soil factors (pH, DOC and EC) on the concentration of copper in dwarf bean leaves (phytoavailability) grown in the laboratory on contaminated soils treated with different amendments. The method is based on a hybrid modeling technique that combines an artificial neural network (ANN) and Monte Carlo Simulations (MCS). Because the repeated analyses required by MCS are time-consuming, the ANN is employed to predict the copper concentration in dwarf bean leaves in response to stochastic (random) combinations of soil inputs. The input data for the ANN are a set of selected soil parameters generated randomly according to a Gaussian distribution to represent the parameter variabilities. The output is the copper concentration in bean leaves. The results obtained by the stochastic (hybrid) ANN-MCS method show that the proposed approach may be applied (i) to perform a sensitivity analysis of soil factors in order to quantify the most important soil parameters including soil properties and amendments on a given metal concentration, (ii) to contribute toward the development of decision-making processes at a large field scale such as the delineation of contaminated sites.

摘要

土壤性质的统计变化及其随机组合可能会影响金属对土壤的污染程度。本文描述了一种方法,用于随机分析某些选定土壤因素(pH 值、DOC 和 EC)的变化对在受污染土壤上用不同改良剂处理后在实验室中生长的矮豆叶片中铜浓度(植物可利用性)的影响。该方法基于一种混合建模技术,结合了人工神经网络 (ANN) 和蒙特卡罗模拟 (MCS)。由于 MCS 所需的重复分析耗时,因此采用 ANN 来预测矮豆叶片对土壤输入的随机(随机)组合的铜浓度。ANN 的输入数据是根据高斯分布随机生成的一组选定的土壤参数,以代表参数变化。输出是豆叶中的铜浓度。通过随机(混合)ANN-MCS 方法获得的结果表明,所提出的方法可应用于:(i) 对土壤因子进行敏感性分析,以便量化给定金属浓度下最重要的土壤参数,包括土壤性质和改良剂;(ii) 有助于在大田间尺度上制定决策过程,例如划定污染场地。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验