NUMED Team, Inovallée, INRIA, 655 avenue de l'Europe, 38330, Montbonnot-Saint-Martin, France,
Bull Math Biol. 2013 Oct;75(10):1891-911. doi: 10.1007/s11538-013-9875-9. Epub 2013 Aug 6.
It is widely accepted that the primary immune system contains a subpopulation of cells, known as regulatory T cells whose function is to regulate the immune response. There is conflicting biological evidence regarding the ability of regulatory cells to lose their regulatory capabilities and turn into immune promoting cells. In this paper, we develop mathematical models to investigate the effects of regulatory T cell switching on the immune response. Depending on environmental conditions, regulatory T cells may transition, becoming effector T cells that are immunostimulatory rather than immunoregulatory. We consider this mechanism both in the context of a simple, ordinary differential equation (ODE) model and in the context of a more biologically detailed, delay differential equation (DDE) model of the primary immune response. It is shown that models that incorporate such a mechanism express the usual characteristics of an immune response (expansion, contraction, and memory phases), while being more robust with respect to T cell precursor frequencies. We characterize the affects of regulatory T cell switching on the peak magnitude of the immune response and identify a biologically testable range for the switching parameter. We conclude that regulatory T cell switching may play a key role in controlling immune contraction.
人们普遍认为,初级免疫系统包含一群被称为调节性 T 细胞的细胞,其功能是调节免疫反应。关于调节细胞失去调节能力并转变为促进免疫的细胞的能力,存在生物学上相互矛盾的证据。在本文中,我们开发了数学模型来研究调节性 T 细胞转换对免疫反应的影响。根据环境条件,调节性 T 细胞可能会转变为效应 T 细胞,这些细胞具有免疫刺激性而不是免疫调节性。我们在简单的常微分方程 (ODE) 模型和更详细的原发性免疫反应的时滞微分方程 (DDE) 模型中都考虑了这种机制。结果表明,包含这种机制的模型表现出通常的免疫反应特征(扩张、收缩和记忆阶段),并且对 T 细胞前体频率具有更强的鲁棒性。我们描述了调节性 T 细胞转换对免疫反应峰值幅度的影响,并确定了转换参数的可生物测试范围。我们得出的结论是,调节性 T 细胞转换可能在控制免疫收缩中发挥关键作用。