Suppr超能文献

单细胞基因组测序和从头组装用于稀疏微生物群落。

Distilled single-cell genome sequencing and de novo assembly for sparse microbial communities.

机构信息

Department of Computer Science and Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA.

出版信息

Bioinformatics. 2013 Oct 1;29(19):2395-401. doi: 10.1093/bioinformatics/btt420. Epub 2013 Aug 5.

Abstract

MOTIVATION

Identification of every single genome present in a microbial sample is an important and challenging task with crucial applications. It is challenging because there are typically millions of cells in a microbial sample, the vast majority of which elude cultivation. The most accurate method to date is exhaustive single-cell sequencing using multiple displacement amplification, which is simply intractable for a large number of cells. However, there is hope for breaking this barrier, as the number of different cell types with distinct genome sequences is usually much smaller than the number of cells.

RESULTS

Here, we present a novel divide and conquer method to sequence and de novo assemble all distinct genomes present in a microbial sample with a sequencing cost and computational complexity proportional to the number of genome types, rather than the number of cells. The method is implemented in a tool called Squeezambler. We evaluated Squeezambler on simulated data. The proposed divide and conquer method successfully reduces the cost of sequencing in comparison with the naïve exhaustive approach.

AVAILABILITY

Squeezambler and datasets are available at http://compbio.cs.wayne.edu/software/squeezambler/.

摘要

动机

识别微生物样本中存在的每一个基因组是一项重要且具有挑战性的任务,具有关键的应用。这是具有挑战性的,因为在微生物样本中通常有数百万个细胞,其中绝大多数难以培养。迄今为止最准确的方法是使用多次置换扩增进行全面的单细胞测序,而对于大量细胞来说,这是根本无法实现的。然而,有希望打破这一障碍,因为具有不同基因组序列的不同细胞类型的数量通常远小于细胞数量。

结果

在这里,我们提出了一种新的分而治之的方法,用于对微生物样本中存在的所有不同基因组进行测序和从头组装,其测序成本和计算复杂度与基因组类型的数量成正比,而不是与细胞数量成正比。该方法在称为 Squeezambler 的工具中实现。我们在模拟数据上评估了 Squeezambler。与简单的穷举方法相比,所提出的分而治之方法成功降低了测序成本。

可用性

Squeezambler 和数据集可在 http://compbio.cs.wayne.edu/software/squeezambler/ 获得。

相似文献

2
Ensemble analysis of adaptive compressed genome sequencing strategies.自适应压缩基因组测序策略的集成分析。
BMC Bioinformatics. 2014;15 Suppl 9(Suppl 9):S13. doi: 10.1186/1471-2105-15-S9-S13. Epub 2014 Sep 10.
4
De novo meta-assembly of ultra-deep sequencing data.从头组装超深度测序数据。
Bioinformatics. 2015 Jun 15;31(12):i9-16. doi: 10.1093/bioinformatics/btv226.
5
Optimization of de novo transcriptome assembly from next-generation sequencing data.从头转录组组装的优化。
Genome Res. 2010 Oct;20(10):1432-40. doi: 10.1101/gr.103846.109. Epub 2010 Aug 6.
7
PALMA: mRNA to genome alignments using large margin algorithms.帕尔马:使用大间隔算法将信使核糖核酸与基因组进行比对。
Bioinformatics. 2007 Aug 1;23(15):1892-900. doi: 10.1093/bioinformatics/btm275. Epub 2007 May 30.

引用本文的文献

1
Graph Traversal Edit Distance and Extensions.图遍历编辑距离及其扩展
J Comput Biol. 2020 Mar;27(3):317-329. doi: 10.1089/cmb.2019.0511. Epub 2020 Feb 13.
2
Efficient Synergistic Single-Cell Genome Assembly.高效协同的单细胞基因组组装。
Front Bioeng Biotechnol. 2016 May 23;4:42. doi: 10.3389/fbioe.2016.00042. eCollection 2016.
4
Ensemble analysis of adaptive compressed genome sequencing strategies.自适应压缩基因组测序策略的集成分析。
BMC Bioinformatics. 2014;15 Suppl 9(Suppl 9):S13. doi: 10.1186/1471-2105-15-S9-S13. Epub 2014 Sep 10.

本文引用的文献

2
A framework for human microbiome research.人类微生物组研究框架。
Nature. 2012 Jun 13;486(7402):215-21. doi: 10.1038/nature11209.
6
ART: a next-generation sequencing read simulator.ART:一种新一代测序读模拟程序。
Bioinformatics. 2012 Feb 15;28(4):593-4. doi: 10.1093/bioinformatics/btr708. Epub 2011 Dec 23.
9
Compressed Genotyping.压缩基因分型
IEEE Trans Inf Theory. 2010 Feb;56(2):706-723. doi: 10.1109/TIT.2009.2037043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验