Institute of Plant Biology, University of Zürich, CH-8008 Zurich, Switzerland.
Plant Physiol. 2013 Oct;163(2):830-43. doi: 10.1104/pp.113.219832. Epub 2013 Aug 5.
Aluminum-activated malate transporters (ALMTs) form an important family of anion channels involved in fundamental physiological processes in plants. Because of their importance, the role of ALMTs in plant physiology is studied extensively. In contrast, the structural basis of their functional properties is largely unknown. This lack of information limits the understanding of the functional and physiological differences between ALMTs and their impact on anion transport in plants. This study aimed at investigating the structural organization of the transmembrane domain of the Arabidopsis (Arabidopsis thaliana) vacuolar channel AtALMT9. For that purpose, we performed a large-scale mutagenesis analysis and found two residues that form a salt bridge between the first and second putative transmembrane α-helices (TMα1 and TMα2). Furthermore, using a combination of pharmacological and mutagenesis approaches, we identified citrate as an "open channel blocker" of AtALMT9 and used this tool to examine the inhibition sensitivity of different point mutants of highly conserved amino acid residues. By this means, we found a stretch within the cytosolic moiety of the TMα5 that is a probable pore-forming domain. Moreover, using a citrate-insensitive AtALMT9 mutant and biochemical approaches, we could demonstrate that AtALMT9 forms a multimeric complex that is supposedly composed of four subunits. In summary, our data provide, to our knowledge, the first evidence about the structural organization of an ion channel of the ALMT family. We suggest that AtALMT9 is a tetramer and that the TMα5 domains of the subunits contribute to form the pore of this anion channel.
铝激活苹果酸转运蛋白(ALMTs)形成一个重要的阴离子通道家族,参与植物的基本生理过程。由于它们的重要性,ALMTs 在植物生理学中的作用得到了广泛的研究。相比之下,它们功能特性的结构基础在很大程度上是未知的。这种信息的缺乏限制了对 ALMTs 之间的功能和生理差异的理解及其对植物阴离子运输的影响。本研究旨在研究拟南芥液泡通道 AtALMT9 的跨膜域的结构组织。为此,我们进行了大规模的突变分析,发现了两个残基,它们在第一个和第二个假定的跨膜α螺旋(TMα1 和 TMα2)之间形成盐桥。此外,我们还结合药理学和突变分析方法,鉴定出柠檬酸是 AtALMT9 的“开放通道阻断剂”,并使用该工具来研究不同高度保守氨基酸残基的点突变体的抑制敏感性。通过这种方法,我们发现 TMα5 的胞质部分内存在一个可能的孔形成域。此外,我们还使用柠檬酸不敏感的 AtALMT9 突变体和生化方法,证明了 AtALMT9 形成一个多聚体复合物,该复合物可能由四个亚基组成。总之,我们的数据提供了,据我们所知,关于 ALMT 家族的离子通道的结构组织的第一个证据。我们认为 AtALMT9 是一个四聚体,并且亚基的 TMα5 结构域有助于形成该阴离子通道的孔。