de Jong J W, van der Meer P, van Loon H, Owen P, Opie L H
Cardiochemical Laboratory, Erasmus University, Rotterdam, The Netherlands.
J Thorac Cardiovasc Surg. 1990 Sep;100(3):445-54.
Adenosine is known to induce rapid cardioplegic arrest and to improve postischemic recovery in the isolated rat heart. Long exposures to high doses of adenosine impair postischemic recovery, however. In this paper we tested the combination of low-dose adenosine (1 mmol/L) with potassium (26 mmol/L), with the aim of achieving rapid arrest (as with high-dose adenosine) but eliminating the need for postarrest washout of adenosine. Cardioplegic solutions studied were (1) Krebs-Henseleit potassium (26 mmol/L) (K); (2) K plus adenosine (1 mmol/L) (KA); (3) K plus an adenosine deaminase inhibitor [erythro-9-(2-hydroxy-3-nonyl)adenine] (0.1 mmol/L) (KE); and as control (4) Krebs-Henseleit potassium (6 mmol/L) (C). We induced cardiac arrest in Langendorff-perfused rat hearts by infusing the cardioplegic solution for 3 minutes at 3 ml/min. Total ischemia lasted 20 minutes at 37 degrees C, followed by reperfusion for 30 minutes. High potassium decreased the arrest time from 260 +/- 16 seconds (group C, mean values +/- standard error of the mean) to 22 +/- 4 seconds (group K). A further decrease to 10 +/- 2 seconds was observed with KA (p = 0.016 versus K). KE, which increased endogenous adenosine, gave intermediate effects. All hearts recovered during reperfusion; the product of developed tension and heart rate (grams per minute) was superior in KA hearts (6250 +/- 740 versus K hearts 4380 +/- 390; p = 0.050). KE gave an intermediate result (5290 +/- 900), while C showed the worst recovery (3180 +/- 830). Our electrophysiologic studies with sinus node and atrial tissue suggest that adenosine induced hyperpolarization and an increase in potassium permeability, thereby arresting the sinus node before depolarization of the membrane by potassium (26 mmol/L). We conclude that low-dose adenosine as an adjunct to potassium shortens the arrest time in this model and improves postischemic recovery.
已知腺苷可诱导大鼠离体心脏快速停搏,并改善缺血后的恢复。然而,长时间暴露于高剂量腺苷会损害缺血后的恢复。在本文中,我们测试了低剂量腺苷(1 mmol/L)与钾(26 mmol/L)的组合,目的是实现快速停搏(如高剂量腺苷那样),但无需在停搏后冲洗腺苷。所研究的心脏停搏液包括:(1) Krebs-Henseleit 钾液(26 mmol/L)(K);(2)K 加腺苷(1 mmol/L)(KA);(3)K 加腺苷脱氨酶抑制剂[erythro-9-(2-hydroxy-3-nonyl)adenine](0.1 mmol/L)(KE);作为对照的是(4)Krebs-Henseleit 钾液(6 mmol/L)(C)。我们通过以 3 ml/min 的速度灌注心脏停搏液 3 分钟,诱导 Langendorff 灌注的大鼠心脏停搏。在 37℃下,总缺血持续 20 分钟,随后再灌注 30 分钟。高钾使停搏时间从 260±16 秒(C 组,平均值±平均标准误差)降至 22±4 秒(K 组)。KA 组观察到停搏时间进一步降至 10±2 秒(与 K 组相比,p = 0.016)。增加内源性腺苷的 KE 组产生中间效应。所有心脏在再灌注期间均恢复;KA 组心脏的舒张期张力与心率的乘积(克/分钟)优于 K 组(6250±740 对 K 组 4380±390;p = 0.050)。KE 组产生中间结果(5290±900),而 C 组恢复最差(3180±830)。我们对窦房结和心房组织的电生理研究表明,腺苷诱导超极化并增加钾通透性,从而在膜被钾(26 mmol/L)去极化之前使窦房结停搏。我们得出结论,低剂量腺苷作为钾的辅助剂可缩短该模型中的停搏时间并改善缺血后的恢复。