Ogunyemi Omolola, Teklehaimanot Senait, Patty Lauren, Moran Erin, George Sheba
Center for Biomedical Informatics.
Stud Health Technol Inform. 2013;192:162-5.
Screening guidelines for diabetic patients recommend yearly eye examinations to detect diabetic retinopathy and other forms of diabetic eye disease. However, annual screening rates for retinopathy in US urban safety net settings remain low.
Using data gathered from a study of teleretinal screening in six urban safety net clinics, we assessed whether predictive modeling could be of value in identifying patients at risk of developing retinopathy. We developed and examined the accuracy of two predictive modeling approaches for diabetic retinopathy in a sample of 513 diabetic individuals, using routinely available clinical variables from retrospective medical record reviews. Bayesian networks and radial basis function (neural) networks were learned using ten-fold cross-validation.
The predictive models were modestly predictive with the best model having an AUC of 0.71.
Using routinely available clinical variables to predict patients at risk of developing retinopathy and to target them for annual eye screenings may be of some usefulness to safety net clinics.
糖尿病患者筛查指南建议每年进行眼部检查,以检测糖尿病视网膜病变和其他形式的糖尿病眼病。然而,在美国城市安全网环境中,视网膜病变的年度筛查率仍然很低。
利用从六个城市安全网诊所的远程视网膜筛查研究中收集的数据,我们评估了预测模型在识别有患视网膜病变风险的患者方面是否有价值。我们使用回顾性病历审查中常规可用的临床变量,在513名糖尿病个体的样本中开发并检验了两种糖尿病视网膜病变预测模型方法的准确性。使用十折交叉验证学习贝叶斯网络和径向基函数(神经)网络。
预测模型具有一定的预测能力,最佳模型的曲线下面积为0.71。
使用常规可用的临床变量来预测有患视网膜病变风险的患者,并将他们作为年度眼部筛查的目标,这可能对安全网诊所有所帮助。